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Abstract: A systematic group theoretical formulation of the Pohlmeyer reduction is pre-

sented. It provides a map between the equations of motion of sigma models with target-

space a symmetric space M = F/G and a class of integrable multi-component generaliza-

tions of the sine-Gordon equation. When M is of definite signature their solutions describe

classical bosonic string configurations on the curved space-time Rt × M. In contrast, if

M is of indefinite signature the solutions to those equations can describe bosonic string

configurations on Rt × M, M× S1
ϑ or simply M. The conditions required to enable the

Lagrangian formulation of the resulting equations in terms of gauged WZW actions with

a potential term are clarified, and it is shown that the corresponding Lagrangian action is

not unique in general. The Pohlmeyer reductions of sigma models on CPn and AdSn are

discussed as particular examples of symmetric spaces of definite and indefinite signature,

respectively.
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1. Introduction

Pohlmeyer reduction provides a map between the equations of motion of two-dimensional

sigma models and a class of multi-component integrable generalizations of the sine-Gordon

equation. It relies on the classical conformal invariance of sigma models that can be

exploited to choose coordinates such that the components of the stress-energy tensor are

constant; namely,

T++ = T−− = µ2 (1.1)

together with T+− = 0. The simplest examples, originally discussed by Pohlmeyer, are

provided by the reduction of the S2 = SO(3)/SO(2) and the S3 = SO(4)/SO(3) sigma

models, which yield the well-known sine-Gordon and complex sine-Gordon equations, re-

spectively [1] (see also [2]). This procedure has been generalised to the sigma models

associated to generic symmetric spaces following a group theoretical approach that leads
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to the so-called symmetric space sine-Gordon (SSSG) equations [3 – 7],1 whose integrabil-

ity properties are very well established. In contrast, their Lagrangian formulation was a

long-standing problem until Bakas, Park and Shin proposed their identification with the

equations of motion of specific gauged Wess-Zumino-Witten (gWZW) actions modified by

suitable potentials [8] (see also [9 – 12]).

If we denote by M = F/G the target-space of the sigma model, the conditions (1.1) can

be identified with the Virasoro constraints of bosonic string theory on the curved space-time

Rt ×M using the orthonormal gauge t = µτ [13]. Then, Pohlmeyer reduction provides a

classical relation between (integrable) generalised sine-Gordon equations and bosonic string

theory on curved space-times of that type.2 This alternative formulation has proved to be

very useful in the study of the classical spectrum of string theory on curved space-times

and, in particular, in the investigation of the AdS/CFT correspondence. For instance,

applied to the subspaces Rt × S2 and Rt × S3 of AdS5 × S5, Pohlmeyer reduction relates

the ‘giant magnons’ of [15] and the ‘dyonic giant magnons’ of [16] to the soliton solutions

of the sine-Gordon and complex sine-Gordon equations, respectively. More examples can

be found in [17]. In a similar way, it seems likely that Pohlmeyer reduction will also be

useful in the study of the recently proposed duality between superstrings on AdS4 × CP 3

and N = 6 super Chern-Simons theory [18].

The ‘stringy’ interpretation in terms of Rt × M requires that µ2 > 0 in (1.1), which

is the only possibility if M is a manifold of definite (positive) signature. This includes

compact manifolds like the n-spheres Sn = SO(n + 1)/SO(n) or the complex projec-

tive spaces CPn = SU(n + 1)/U(n), and noncompact ones like the hyperbolic n-spaces

Hn = SO(1, n)/SO(n). In contrast, if M is of indefinite signature Polhmeyer reduction can

also be performed with µ2 < 0. Then, it provides a relationship between two-dimensional

integrable equations and bosonic string theory on M × S1
ϑ, where the conditions (1.1)

arise as the Virasoro constraints in the gauge ϑ = µτ , with ϑ being the S1 angular co-

ordinate [19]. Important examples of manifolds of indefinite signature are the de Sitter

dSn = SO(1, n)/SO(1, n− 1) and anti-de Sitter AdSn = SO(2, n− 1)/SO(1, n− 1) spaces.

Furthermore, for symmetric spaces of this type, it is also possible to perform Polhmeyer

reduction with µ2 = 0. Obviously, this case is different to the others with µ2 6= 0, since

the constraints (1.1) do not break conformal invariance. Nevertheless, it has a natural

interpretation in terms of bosonic string theory on M and, in fact, Pohlmeyer reduction

with µ2 = 0 has already been used to construct classical bosonic string configurations on

de Sitter and anti-de Sitter spaces in [21, 22].

From the point of view of the original sigma model degrees of freedom, Pohlmeyer re-

duction amounts to a non-local transformation of variables that breaks conformal invariance

(provided that µ2 6= 0) while preserving integrability and two-dimensional Lorentz invari-

ance. Taking this into account, Grigoriev and Tseytlin [19, 20] and Mikhailov and Schäfer-

1In [12] the name ‘symmetric space sine-Gordon’ was used to denote only a particular subset of SSSG

theories described by gWZW actions with a potential term associated to cosets of the form G/ U(1)p, which

were singled out by the condition of having a mass gap without exhibiting non-abelian global symmetries.
2A different string theoretical interpretation of Pohlmeyer reduction follows from the work of Lund and

Regge [14]
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Nakemi [23] have recently proposed a generalization of Pohlmeyer reduction to reduce the

PSU(2, 2|4)/Sp(2, 2)×Sp(4) supercoset model and, in this way, to find a novel, manifestly

two-dimensional Lorentz invariant formulation of the full AdS5 × S5 superstring theory,

which is known to be classically integrable [24], alternative to the usual formulation in the

light-cone gauge [25]. The starting point of their proposal is the reduction of the bosonic

part of the supercoset, which consists of two decoupled AdS5 and S5 sigma models. Using

classical conformal invariance, the corresponding Virasoro constraints can be written as

T
(AdS5)
±± = −µ2 and T

(S5)
±± = +µ2, (1.2)

which leads to two decoupled Pohlmeyer-reduced AdS5 and S5 sigma models. Then, the

proposed new Lagrangian formulation of the AdS5 × S5 superstring theory is found by

generalizing the approach of [8], and it is provided by a gWZW action with a potential

term coupled also to a set of two-dimensional fermionic fields.

The implementation of the proposal of [19, 20, 23] requires a rather precise under-

standing of the relationship between the degrees of freedom of the original sigma model

and those of the gWZW action with a potential term that describes the reduced model.

For the sigma models which are relevant to the proposal, it has been explicitly worked out

in [19] (see also [20, 23]). However, although the results of that paper apply to a larger

class of reduced sigma models, they are not general enough to describe the relationship

between the degrees of freedom in all the possible cases and, in particular, in the reduced

models associated to symmetric spaces or rank larger than 1.3

The purpose of this paper is to provide a systematic group theoretical formulation of

Pohlmeyer reduction that makes explicit the relationship between the equations of motion

of sigma models with target-space a generic (bosonic) symmetric space, the correspond-

ing SSSG equations, and the equations of motion of the gWZW actions that provide their

Lagrangian formulation. It is organized as follows. In section 2, we summarise the construc-

tion of the nonlinear sigma model with target-space a symmetric space F/G. Its equations

of motion can be written in terms of the currents J± = Pp(f
−1∂±f), where f is a field that

takes values in F , Pp is the orthogonal projector on the complement of the Lie algebra g of

G in the Lie algebra f of F (see (2.1)), and ∂± = ∂τ ± ∂x. They imply that ∂± Tr(Jn
±) = 0,

which provides an infinite set of local chiral conserved densities. Then, Pohlmeyer reduction

amounts to constraining all those conserved densities to be constant. Namely,

Tr(Jn
±) = constant ∀ n ≥ 2, (1.3)

which includes the constraints (1.1) that correspond to n = 2. An early motivation for this

characterization of Pohlmeyer reduction procedure can be found in [6].

In section 3, we shall solve those constraints for symmetric spaces of definite (posi-

tive) signature using the so-called ‘polar coordinate decomposition’. In this case, all the

3The rank of a symmetric space F/G is the dimension of the maximal abelian subspaces in the orthogonal

complement of the Lie algebra g of G in the Lie algebra f of F . It satisfies the bounds rank(F )− rank(G) ≤

rank(F/G) ≤ rank(F ) (see (3.9) and table 1). Sn, CP n and AdSn are examples of symmetric spaces whose

rank is 1.
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local chiral densities Tr(Jn
±) can be written as polynomials in terms of only 2 rank(F/G)

‘primitive’ densities [26]. Then, if rank(F/G) = 1, the only primitive densities are T++

and T−− and, consequently, the reduction gives rise to only one set of SSSG equations

which, up to a classical conformal transformation, is equivalent to the equations of motion

of the original sigma model. In contrast, if rank(F/G) > 1 the reduction involves more

primitive chiral densities than just T++ and T−− and, for different choices of their constant

values, the reduction procedure gives rise to rather different sets of SSSG equations. Their

solutions correspond to bosonic string configurations on Rt ×F/G subjected to additional

constraints. The relationship of the SSSG equations with the non-abelian affine Toda

equations [27 – 29] is clarified in section 3.1, and their Lagrangian formulation is discussed

in section 3.2 where we propose a generalisation of the approach of [8]. It shows that

the Lagrangian formulation is not unique in general Altogether, the results of section 3

provide the explicit relationship between the equations of motion of the sigma model, the

corresponding SSSG equations, and the equations of motion of the gWZW actions that

provide their Lagrangian formulation. This is one of the main results of this paper, which

is summarised by figure 1.

In section 4, we illustrate the results of section 3 with two examples: The Pohlmeyer

reduction of the sigma models with target-space CPn, and the reduction of the principal

chiral models associated to a compact Lie group G, which can be realised as nonlinear

sigma models with target-space G×G/GD . The reduction of the S3 sigma model, which

provides the pattern for all the other cases, is discussed in appendix B.

In section 5, we shall solve the constraints (1.3) for the anti-de Sitter spaces AdSn =

SO(2, n−1)/SO(1, n−1), which are examples of symmetric spaces of indefinite (Lorentzian)

signature. In order to do it, we proof a generalization of the ‘polar coordinate decomposi-

tion’ satisfied by symmetric spaces of definite signature. The reduction gives rise to three

different basic types of SSSG equations corresponding to µ2 > 0, µ2 < 0 and µ2 = 0.

Their solutions describe bosonic string configurations on Rt×AdSn, AdSn ×S
1
ϑ and AdSn,

respectively. Finally, section 6 contains our conclusions, and there are two appendices.

2. Non-linear sigma models on symmetric spaces

We begin by summarising the construction of (bosonic) nonlinear sigma models with target-

space a symmetric space (see [30] for a comprehensive review). Let us consider a symmetric

space M = F/G, where F is a connected real Lie group with Lie algebra f, G is a closed

subgroup with Lie algebra g, and we have the canonical decomposition [31 – 33]

f = g ⊕ p, such that [g, g] ⊂ g, [g, p] ⊂ p, [p, p] ⊂ g . (2.1)

Here, F = I0(M) is the identity component of the group of isometries of M which acts

transitively on M. This means that for each p, q ∈ M there is f ∈ F such that fp = q

or, equivalently, that M = F · p0 for an arbitrary point p0 ∈ M. Correspondingly, G

is the isotropy group (or little group) of p0; namely, G = {g ∈ F : gp0 = p0}. We

will restrict ourselves to symmetric spaces with F semisimple. Moreover, we will always

consider explicit realizations in terms of matrix representations of F , and we will assume
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that the corresponding trace form provides a non-degenerate, Ad(F )-invariant, bilinear

form on f such that the decomposition (2.1) is orthogonal.

Let f = f(τ, x) be a 1+1 dimensional field taking values on a faithful matrix representa-

tion of F . To formulate the sigma model with target-space M = F/G, we introduce a gauge

field Bµ on g and define a covariant derivative Dµf = ∂µf − fBµ with the property that

f → fg−1, Bµ → g
(
Bµ + ∂µ

)
g−1 ⇒ Dµf →

(
Dµf

)
g−1 (2.2)

for any g = g(τ, x) taking values on G. It is also useful to introduce the f-valued current

Jµ = f−1Dµf = f−1∂µf −Bµ (2.3)

that is covariant under gauge transformations,

Jµ → gJµg
−1 . (2.4)

Then, if the Lie group F is simple, the nonlinear sigma model is defined by the Lagrangian

L = −
1

2κ
Tr
(
JµJ

µ
)
, (2.5)

where κ is an overall normalization constant that plays no role in the classical equations of

motion. L is invariant under the local G-symmetry specified by (2.2), which exhibits that

it is actually defined on the coset F/G. In addition, it is also invariant under the global

F -symmetry f → f0f , for any constant f0 ∈ F . Correspondingly, the Lagrangian for F

semisimple is a sum of terms like (2.5) with overall normalization factors κ that can be

different for each simple factor (see (3.7)).

Without loss of generality, we can restrict ourselves to sigma models defined by La-

gragians of the form (2.5). Then, the equation of motion for the field f is

DµJ
µ = ∂µJ

µ + [Bµ, J
µ] = 0 (2.6)

which, together with the trivial identity [∂µ + f−1∂µf, ∂µ + f−1∂νf ] = 0, implies

DµJν −DνJµ +
[
Jµ, Jν

]
+ Fµν = 0, (2.7)

where Fµν = ∂µBν −∂νBµ +
[
Bµ, Bν

]
. Correspondingly, the equations for the fields Bµ are

Jµ = 0 on g (2.8)

which, taking (2.1) into account, force Jµ to take values in p. Then, (2.6) and (2.7) split into

D±J∓ = ∂±J∓ + [B±, J∓] = 0 (in p) and [J+, J−] + F+− = 0 (in g), (2.9)

where we have made use of the light-cone variables x± = 1
2(τ ± x), and ∂± = ∂τ ± ∂x. The

first equation in (2.9) implies that

∂± Tr
(
Jn
∓

)
= 0 , (2.10)
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which provides a set of local chiral densities that display the two-dimensional conformal

invariance of the sigma model. In particular, the non-vanishing components of the stress-

energy tensor are recovered for n = 2,

T++ = −
1

2κ
Tr
(
J2

+

)
and T−− = −

1

2κ
Tr
(
J2
−

)
. (2.11)

In the following sections, we will consider the class of symmetric space sine-Gordon (SSSG)

equations obtained by constraining all the local chiral densities provided by (2.10) to take

constant values; namely, the equations obtained by imposing the constraints (1.3),

Tr(Jn
±) = constant ∀ n ≥ 2.

3. SSSG equations from sigma models with target-space a symmetric

space of definite signature

The symmetric spaces of definite (positive) signature are characterised by the condition

that G and, therefore, g are compact.4 They have been completely classified by Cartan,

and a thorough survey of their structure and properties can be found in [33]. An important

result is that any symmetric space M = F/G of definite signature with F semisimple can

be decomposed as a direct product of symmetric spaces of the following two basic types:

(a) ‘Compact type’, if f is compact.

(b) ‘Noncompact type’, if f is noncompact and f = g ⊕ p is a ‘Cartan decomposition’,

which means that the restriction of the trace form to p is positive definite.

Here we are assuming that the trace form, which is proportional to the Killing form of f,

is normalised such that its restriction to any compact subalgebra, and in particular to g,

is negative definite. Both types of symmetric spaces are related by the so-called ‘duality

symmetry’

f = g ⊕ p −→ f∗ = g ⊕ ip, (3.1)

so that if (f, g) corresponds to a symmetric space F/G of compact type, then (f∗, g) cor-

responds to a symmetric space F ∗/G of noncompact type, and the other way around.

Examples of symmetric spaces of definite signature of compact and noncompact type are

provided by the n-spheres

Sn = {(x1, . . . , xn+1) : x2
1 + · · · + x2

n+1 = 1} = SO(n+ 1)/SO(n) (3.2)

and the n-hyperbolic spaces

Hn
+ = {(x1, . . . , xn+1) : −x2

1 + x2
2 + · · · + x2

n+1 = −1, x1 > 0} = SO(1, n)/SO(n), (3.3)

respectively, which are in fact related by the duality symmetry (3.1). Furthermore, the

symmetric spaces of compact type can be decomposed as the direct product of ‘irreducible’

symmetric spaces of two types [33]:

4In the mathematical literature, symmetric spaces of definite signature are usually called Riemannian,

while those of indefinite signature are called semi-Riemannian [32].
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(a.1) ‘Type I’, if F is a compact simple Lie group.

(a.2) ‘Type II’, if F/G = G × G/GD, where G is a compact simple Lie group and GD is

the diagonal of the product G×G (see section 4.2).

Since (G×G)/GD is trivially isomorphic to G, the sigma models with target-space a sym-

metric space of type II are just the principal chiral models associated to compact simple

Lie groups. The corresponding decomposition of symmetric spaces of noncompact type as

the direct product of irreducible symmetric spaces of ‘type III’ and ‘type IV’ can be easily

deduced from the classification of the compact ones using the duality symmetry (3.1).

Let us consider a generic symmetric space of definite signature of the form

M = M− ×M+, (3.4)

where M− and M+ are of compact and noncompact type, respectively. Let Fc (Fnc) be

the identity component of the group of isometries of M− (M+), and G− (G+) the isotropy

group of an arbitrary point in M− (M+). Then,

M = M− ×M+ = Fc/G− × Fnc/G+ = F/G, (3.5)

where F = Fc×Fnc and G = G−×G+. By definition, Fc is compact and Fnc is noncompact.

However, since the symmetric space M is of definite signature, both G− and G+ are

compact. The Lie algebras fc of Fc and fnc of Fnc admit canonical decompositions of the

form (2.1) and, using obvious notation, g = g− ⊕ g+ and p = pc ⊕ pnc. By construction,

the restriction of the trace form to pc and pnc is negative and positive definite, respectively.

This provides a non-degenerate, Ad(F )-invariant, bilinear form on f

(a, b) =

{
−Tr(ab), if a, b ∈ fc

+ Tr(ab), if a, b ∈ fnc

(3.6)

whose restriction to p is positive definite, and which extends to the positive definite F -

invariant metric on M = F/G. Then, the nonlinear sigma model with target-space M =

M− ×M+ is defined by the Lagrangian [34]

L =
1

2

(
Jµ, J

µ
)

= −
1

2
Tr
(
J (c)

µ J (c)µ
)

+
1

2
Tr
(
J (nc)

µ J (nc)µ
)

(3.7)

where J
(c)
µ and J

(nc)
µ are the components of the current (2.3) with respect to the decompo-

sition f = fc ⊕ fnc. This Lagrangian is a combination of two Lagrangians of the form (2.5)

with κ = +1 and κ = −1, so that T++ and T−− are positive definite. In the following,

and without loss of generality, we will assume that M = F/G is either of compact or

of noncompact type, and that the Lagrangian is of the form (2.5) with κ = +1 or −1,

respectively. The generalization of our results to more general cases is straightforward.

When the target-space of the sigma model is a symmetric space of definite signature,

the general solution to the constraints (1.3) can be found by using the so-called ‘polar

coordinate decomposition’, which is stated as follows [30, 33]. Let a be a maximal abelian
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F/G rank(F/G) rank(F ) rank(G)

Sn = SO(n+ 1)/SO(n) 1
[

n+1
2

] [
n
2

]

CPn = SU(n+ 1)/U(n) 1 n n

SO(n+m)/SO(n) × SO(m) min(n,m)
[

n+m
2

] [
n
2

]
+
[

m
2

]

SU(n+m)/S(U(n) × U(m)) min(n,m) n+m− 1 n+m− 1

SU(n)/SO(n) n− 1 n− 1
[

n
2

]

SU(2n)/Sp(n) n− 1 2n− 1 n

SO(2n)/U(n)
[

n
2

]
n n

Sp(n)/U(n) n n n

Sp(n+m)/Sp(n) × Sp(m) min(n,m) n+m n+m

Table 1: Rank of the symmetric spaces of type I corresponding to the classical Lie groups. Here,

[q] denotes the integer part of the rational number q. A more complete table can be found in [33,

Chapter X].

subspace in p. Then, for any k ∈ p there exists g ∈ G such that g −1k g ∈ a. The proof

of this rather useful property relies on the fact that G is compact. It can be summarised

as follows. First of all, it can be proved that a always contains an element k0 whose

centraliser in p is a; i.e., such that a = {k ∈ p : [k0, k] = 0}. Then, g → Tr(kgk0g
−1)

defines a continuous function on the compact group G and, therefore, it takes a minimum

for, say, g = g. For each T ∈ g, this requires that

0 =
d

dx
Tr(k g exT k0 e−xT g−1)

∣∣
x=0

= Tr(T [k0, g
−1kg]) . (3.8)

Since the restriction of the trace form to g is non-degenerate, (3.8) implies that [k0, g
−1kg] =

0, which ensures that g−1kg ∈ a and completes the proof. A more explicit proof specific

for Sn = SO(n+ 1)/SO(n) is given in appendix B.

The dimension of the maximal abelian subspaces a ⊂ p defines the rank of the sym-

metric space. Recall that the rank of the Lie algebras f and g is the dimension of their

Cartan subalgebras, which are themselves maximal abelian subspaces. Then, taking the

decomposition (2.1) into account, it is easy to show that the rank of the symmetric space

F/G is bounded as follows

rank(F ) − rank(G) ≤ rank(F/G) ≤ rank(F ). (3.9)

To illustrate these bounds, we have collected the rank of all the symmetric spaces of

type I corresponding to the classical Lie groups in table 1. Notice that there are cases

with rank(F/G) = rank(F ) where the maximal abelian subspaces of p are also Cartan

subalgebras of f. It is also worth noticing that, for symmetric spaces of definite signature,

the polar coordinate decomposition ensures that all the maximal abelian subspaces in p

are conjugated under the adjoint action of G, a property that is not true for symmetric

spaces of indefinite signature like AdSn (see section 5).
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Now, let us fix a and denote by n its orthogonal complement in p, so that p = a ⊕ n

and the commutation relations (2.1) imply

[a, a] = {0} and [g, a] ⊂ n . (3.10)

Taking (2.8) into account, we can apply the polar coordinate decomposition to the currents

J± so that

J± = g±c± g
−1
± , (3.11)

where g± and c± are functions that take values in G and in a, respectively. Then, the first

equation in (2.9) becomes

∂±c∓ =
[
∂±g

−1
∓ g∓ − g −1

∓ B±g∓, c∓
]

(3.12)

which, taking (3.10) into account, imply that c+ and c− are chiral,

c+ = c+(x+) and c− = c−(x−) . (3.13)

Using (3.11), the chiral densities provided by (2.10) become

Tr
(
Jn
∓

)
= Tr

(
cn±
)
, (3.14)

which shows that their value is fixed by the value of the components of c+ and c−. This

agrees with the results of [26] where it was shown that, for each chirality, the correspond-

ing conserved quantities can be expressed as polynomials in terms of rank(F/G) ‘primitive’

densities, which is precisely the number of independent components of c+ and c−. There-

fore, constraining all the chiral densities Tr
(
Jn
∓

)
to take constant values is equivalent to

constraining the chiral functions c+ and c− to be constant.

If rank(F/G) = 1, it is straightforward to show that this prescription is completely

equivalent to the original one implemented by Pohlmeyer. Since dim a = 1, we can write

c+ = µ+(x+) Λ and c− = µ−(x−) Λ, (3.15)

where µ+ and µ− are real (numeric) functions, Λ is the only (constant) generator of a and,

since these symmetric spaces are either of compact or of noncompact type, Tr
(
Λ2
)
6= 0.

Then, according to (2.11),

T++ = −
1

2κ
µ2

+(x+)Tr
(
Λ2
)

and T−− = −
1

2κ
µ2
−(x−)Tr

(
Λ2
)
, (3.16)

where the value of κ = ±1 is chosen so that T++ and T−− are always positive, as explained

in the paragraph after (3.7). Therefore, the components of the stress-energy tensor are

constant if, and only if, µ+ and µ− are constant, which is obviously equivalent to the claim

that c+ and c− are constant elements of a. Since all the maximal abelian subspaces in p

are conjugated under the adjoint action of G, in this case the reduction procedure gives

rise to only one set of SSSG equations, which are indeed equivalent to the equations of

motion of the original sigma model up to a (classical) conformal transformation.
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In contrast, if rank(F/G) > 1 the reduction procedure will give rise to different SSSG

equations characterized by the non-equivalent constant values of the primitive chiral den-

sities Tr(Jn
±). Let us take

c+ = µ+Λ+ and c− = µ−Λ−, (3.17)

where Λ+ and Λ− are constant elements of a and µ+, µ− are real constants. Then, since

either f = g ⊕ p or f∗ = g ⊕ ip is compact, the adjoint actions of Λ+ and Λ− in f can be

completely diagonalised, and f admits the orthogonal decompositions

f = Ker
(
AdΛ+

)
⊕ Im

(
AdΛ+

)
and f = Ker

(
AdΛ−

)
⊕ Im

(
AdΛ−

)
. (3.18)

It is easy to check that they satisfy the commutation relations

[
Ker

(
AdΛ±

)
,Ker

(
AdΛ±

)]
⊂ Ker

(
AdΛ±

)

and
[
Ker

(
AdΛ±

)
, Im

(
AdΛ±

)]
⊂ Im

(
AdΛ±

)
. (3.19)

In the following, we will need the centralisers of Λ+ and Λ− in G, which are the two Lie

groups

H(±) =
{
g ∈ G : g−1Λ±g = Λ±

}
, (3.20)

with Lie algebras

h± = Ker
(
AdΛ±

)
∩ g . (3.21)

It is worth noticing that, in general, H(+) 6= H(−) and h+ 6= h−.

The explicit formulation of the reduced model is obtained by imposing a particular

gauge-fixing condition to the equations of motion of the sigma model subjected to the

constraints (3.17). Namely, (2.4) and (3.11) enable the so-called ‘partial reduction’ gauge

condition [30]

J+ = µ+Λ+ and J− = µ−γ
−1Λ−γ, (3.22)

where γ = g −1
− g+ takes values in G. Then, the first two equations in (2.9), D±J∓ = 0,

become

[B−,Λ+] = 0 and [B+ − γ−1∂+γ, γ
−1Λ−γ] = 0, (3.23)

whose general solution is

B− = A
(R)
− ∈ h+ and B+ = γ−1∂+γ + γ−1A

(L)
+ γ, with A

(L)
+ ∈ h− . (3.24)

The condition (3.22) does not fix the gauge symmetry (2.2) completely, and the residual

gauge transformations correspond to γ → γh−1
+ , with h+ ∈ H(+). Moreover, (3.22) is also

explicitly invariant under γ → h−γ, with h− ∈ H(−). Taking (2.2) also into account, all

these gauge transformations can be summarised as follows:

γ → h− γ h
−1
+ , A

(R)
− → h+

(
A

(R)
− + ∂−

)
h−1

+ , and A
(L)
+ → h−

(
A

(L)
+ + ∂+

)
h−1
− . (3.25)

The third equation in (2.9) can be written as a zero-curvature condition for γ,

[
∂+ + γ−1∂+γ + γ−1A

(L)
+ γ + zµ+ Λ+, ∂− +A

(R)
− + z−1µ− γ

−1Λ−γ
]
= 0 (3.26)
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where z is a spectral parameter. This equation, subjected to the gauge symmetry (3.25),

provides the most general form of the SSSG equations specified by (F/G,Λ+,Λ−). Actually,

it is the integrability condition required to reconstruct the field f = f(τ, x) corresponding

to the currents (3.22) and the gauge fields (3.24). Namely, using (2.3), f is the solution to

the auxiliary linear problem

∂+f
−1 = −

(
γ−1∂+γ + γ−1A

(L)
+ γ + µ+ Λ+

)
f−1

∂−f
−1 = −

(
A

(R)
− + µ− γ

−1Λ−γ
)
f−1 (3.27)

whose integrability condition is (3.26). It has a unique solution once the initial condition

f0 = f(τ0, x0) is fixed. The zero-curvature condition (3.26) subjected to (3.25) exhibits

classically integrability and two-dimensional Lorentz invariance. Moreover, it shows that

the model is naturally defined on the left-right asymmetric coset

G/H
(−)
L ×H

(+)
R = G/

[
γ ∼ h− γ h

−1
+ ; γ ∈ G,h− ∈ H(−), h+ ∈ H(+)

]
, (3.28)

which consists of orbits under the action of H
(−)
L ×H

(+)
R on G.

An interesting case occurs when the symmetric space is of maximal rank, which means

that rank(F/G) = rank(F ). Then, the maximal abelian subspaces in p are Cartan subal-

gebras of f, and it is possible to choose Λ+ and Λ− such that H(+) = H(−) = {1}. The

corresponding SSSG equations are defined on the group manifold G, and some features of

the integrable models related to them have been discussed in [35].

3.1 Connection with the non-abelian affine Toda (NAAT) equations

The SSSG equations are usually written as a system of NAAT equations, which amounts to

fixing the gauge symmetry (3.25) as follows. First of all, we shall write the zero-curvature

condition (3.26) as
[
∂+ + γ−1∂+γ + γ−1A

(L)
+ γ, ∂− +A

(R)
−

]
+µ+µ−

[
Λ+, γ

−1Λ−γ
]
= 0. (3.29)

Taking (3.18) and (3.19) into account, it leads to
[
∂+ + Ph+(γ−1∂+γ + γ−1A

(L)
+ γ), ∂− +A

(R)
−

]
= 0

and
[
∂+ +A

(L)
+ , ∂− + Ph−(−∂−γγ

−1 + γA
(R)
− γ−1)

]
= 0, (3.30)

where Ph+ and Ph− are the orthogonal projectors on h+ and h−, respectively. These

equations enable the gauge-fixing conditions

A
(R)
− = A

(L)
+ = Ph+(γ−1∂+γ) = Ph−(∂−γγ

−1) = 0 (3.31)

and, in this gauge, the SSSG equations (3.29) and (3.30) reduce to

∂−(γ−1∂+γ) = µ+µ−
[
Λ+, γ

−1Λ−γ
]

and Ph+(γ−1∂+γ) = Ph−(∂−γγ
−1) = 0, (3.32)

which constitute a system of NAAT equations associated to the Z2-gradation of f given

by (2.1) [27 – 29] (see also [10 – 12]).5

5For earlier references on non-abelian generalizations of the sine-Gordon see [36].
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3.2 Lagrangian formulation

The Lagrangian formulation of the SSSG equations have been a long-standing problem until

Bakas, Park and Shin proposed to identify them with the equations of motion of a gauged

Wess-Zumino-Witten (gWZW) action with a potential term [8] (see also [9 – 12]). However,

the relationship between the original sigma model degrees of freedom and those of the

modified gWZW action was not clarified in that article which, in particular, hides that the

Lagrangian formulation also involves a particular choice of the gauge fixing conditions [19].

One of the reasons behind that omission is that [8] starts directly with the formulation

of the SSSG equations in terms of NAAT equations like (3.32). Actually, it is important

to point out that not all the NAAT equations considered in that paper correspond to

reduced symmetric space sigma models. To be precise, recall that although the equations

considered in [8] are also specified by the data (F/G,Λ+,Λ−), they are of the form

∂−(γ−1∂+γ) = µ2
[
Λ+, γ

−1Λ−γ
]

along with Ph(γ
−1∂+γ) = Ph(∂−γγ

−1) = 0, (3.33)

where h is the simultaneous centraliser of Λ+ and Λ− in the Lie algebra g; i.e.,

h = Cg(Λ+,Λ−) = {r ∈ g : [r,Λ+] = 0 = [r,Λ−]} . (3.34)

Clearly, Cg(Λ+,Λ−) = h+∩h− and, by comparison with (3.32), it is straightforward to no-

tice that the system of NAAT equations (3.33) describes a reduced symmetric space sigma

model only if h+ = h−. In other words, the construction of [8] provides a Lagrangian for-

mulation only for the SSSG equations corresponding to Λ+ and Λ− such that H(+) = H(−).

Nevertheless, the results of [8] can be generalised to a more general class of models

where H(+) and H(−) are isomorphic, but they can be allowed to be different. To be

specific, we shall consider the class of SSSG equations associated to Λ+ and Λ− such that

H(+) = ǫR(H) and H(−) = ǫL(H), (3.35)

whereH is a Lie group with Lie algebra h, and ǫR/L : H → G are two group homomorphisms

that descend to embeddings of the corresponding Lie algebras. We will also require that

these homomorphisms are ‘anomaly free’, which simply means that [37 – 41]

Tr
(
ǫL(a) ǫL(b)

)
= Tr

(
ǫR(a) ǫR(b)

)
, ∀ a, b ∈ h . (3.36)

An important observation is that the choice of ǫL and ǫR in (3.35) is not unique and,

therefore, the Lagrangian formulation will not be unique in general either.

Provided that the Lie groups H(+) and H(−) satisfy (3.35), it is easy to show that the

system of NAAT equations (3.32) admits a Lagrangian formulation in terms of the action

S
[
γ,A±

]
= SgWZW

[
γ,A±

]
−
µ+µ−

2π

∫
d2x Tr

(
Λ+γ

−1Λ−γ
)
. (3.37)

Here, γ ∈ G, A± ∈ h, and

SgWZW

[
γ,A±

]
= SWZW

[
γ
]
+

1

2π

∫
d2xTr

(
−ǫL(A+) ∂−γγ

−1 +

+ǫR(A−) γ−1∂+γ+γ−1 ǫL(A+) γ ǫR(A−)−A+ A−

)
(3.38)
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is the gWZW action associated to the asymmetric coset [40, 41]6

G/H = G/
[
γ ∼ ǫL(h) γ ǫR(h−1); γ ∈ G, h ∈ H

]
.

The action (3.37) is invariant under

γ → ǫL(h) γ ǫR(h−1) and A± → h
(
A± + ∂±

)
h−1, ∀ h ∈ H . (3.39)

The equation of motion for the field γ can be written as the zero-curvature condition

[
∂+ + γ−1∂+γ + γ−1ǫL(A+)γ + zµ+ Λ+, ∂− + ǫR(A−) + z−1µ− γ

−1Λ−γ
]
= 0 , (3.40)

and the equations for the fields A± are

Ph−

(
−∂−γγ

−1 + γǫR(A−)γ−1
)

= ǫL(A−),

and Ph+

(
γ−1∂+γ + γ−1ǫL(A+)γ

)
= ǫR(A+), (3.41)

where we remind that h− = ǫL(h) and h+ = ǫR(h). Then, the connection with the NAAT

equations is recovered as follows. Using (3.18 ), (3.19) and (3.41), the h+ = ǫR(h) compo-

nent of (3.40) implies that the h-connection A± is flat,

[
∂+ + A+, ∂− + A−

]
= 0, (3.42)

which enables the gauge condition

A+ = A− = 0. (3.43)

In this gauge, (3.40) and (3.41) become just the NAAT equations (3.32).

However, our main interest here is to establish the relationship between the degrees

of freedom of the original sigma model and those of the action (3.37). It follows from the

comparison of (3.25) and (3.26) with (3.39) and (3.40), respectively. Indeed, notice that

with the identifications

A
(L)
+ = ǫL(A+) and A

(R)
− = ǫR(A−) (3.44)

the zero-curvature conditions (3.26) and (3.40) coincide. Correspondingly, the interpre-

tation of the constraints (3.41) was clarified by Grigoriev and Tseytlin in [19]. They are

gauge conditions that partly fix the symmetry under H
(−)
L ×H

(+)
R given by (3.25), so that

the residual gauge transformations correspond to

h+ = ǫR(h), h− = ǫL(h), h ∈ H (3.45)

or, equivalently, to (3.39). The consistency of this interpretation of the constraints (3.41)

for symmetric spaces of definite signature will be demonstrated in appendix A.

6To be precise, the coset model is asymmetric only if ǫL 6= ǫR. Although we will not display the

dependence of the coset G/H on the choice of ǫL and ǫR, it is important to stress that its geometry is very

sensitive to it.
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F/G sigma model

(f,B±)
-

Λ+,Λ− reduction

eqs. (3.22) and (3.24) G/(H
(−)
L ⊗H

(+)
R )

(γ,A
(L)
+ , A

(R)
− )

?

G/H gWZW

(γ,A±)

Eqs. (3.35), (3.44) and

,

gauge fixing (3.41)

�
NAAT equation

(γ) Gauge fixing

eq. (3.43)

?

Gauge fixing

eq. (3.31)

Figure 1: A schematic summary of the map between the solutions (f,Bµ) to the equations of

motion (3.26) of the reduced sigma model specified by (F/G,Λ+,Λ−
), the solutions (γ,Aµ) to the

equations of motion of the G/H gWZW action with a potential term (3.37), and the solutions (γ)

to the NAAT equations (3.32).

It is worth noticing that the interpretation of (3.41) as gauge conditions implies that

the different Lagrangian formulations provided by different choices of ǫL and ǫR are related

by gauge transformations. From the point of view of the relevant gWZW actions with a

potential term, those gauge transformations should correspond to target-space duality sym-

metries similar to those discussed in [42]. We will explicitly check that this is so in the reduc-

tion of the CP 2 and S3 sigma models discussed in section 4.1 and appendix B, respectively.

Altogether, the results of this section provide the explicit map between the solu-

tions (f,Bµ) to the equations of motion (3.26) of the reduced sigma model specified by

(F/G,Λ+,Λ−), and the solutions (γ,Aµ) to the equations of motion of the G/H gWZW

action with a potential term (3.37). Its form, which constitutes one of the main results of

this paper, is summarised by figure 1.

4. Examples

4.1 Pohlmeyer reduction of CPn sigma models: bosonic strings on Rt × CPn

We shall illustrate the main features of the construction presented in the previous section

with the Pohlmeyer reduction of the CPn nonlinear sigma model. The solutions to the

resulting SSSG equations describe bosonic string configurations on Rt ×CPn, which could

be useful in the study of the recently proposed duality between superstring theory on

AdS4 × CP 3 and N = 6 super Chern-Simons theory [18]. The reduction of the CPn

nonlinear sigma model has been discussed long ago by Eichenhrr and Honerkamp in [3, 4],

and its Lagrangian formulation in terms of a gWZW action with a potential term was

proposed by Bakas, Park and Shin in [8]. Our construction clarifies the relationship between

the degrees of freedom of that action and those of the original sigma model. In particular,

we shall discuss in detail the case of CP 2, which admits two different Lagrangians and
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illustrates the non-uniqueness of the Lagrangian formulation pointed out in section 3.27

The 2n-dimensional complex projective space

CPn = {(z1, . . . , zn+1) ∈ C
n+1}/[ (z1, . . . , zn+1) ∼ λ(z1, . . . , zn+1); λ ∈ C 6= 0 ] (4.1)

= SU(n+ 1)/U(n) (4.2)

is a compact symmetric space of (definite signature and) type I. Using the (n+1)× (n+1)

matrix representation of SU(n+ 1), we can choose the embedding of U(n) = SU(n)×U(1)

into SU(n+ 1) to be

(M, e iφ) →




einφ 0 · · · 0

0
... e−iφ M

0



, (4.3)

which corresponds to the isotropy group of the point (1, 0, . . . , 0). Then, the form of the

elements r ∈ g and k ∈ p in (2.1) is

r =




inφ 0 · · · 0

0
... −iφ I + M

0




and k =




0 v1 · · · vn

−v∗1 0 · · · 0
...

... · · ·
...

−v∗n 0 · · · 0



, (4.4)

where M = −M† denotes a n × n anti-Hermitian matrix, (v1, . . . , vn) is a complex n-

dimensional file vector, and φ is real. It is straightforward to check that this decomposition

is orthogonal with respect to the trace form and, moreover, that the rank of CPn is 1.

Since rank(CPn) = 1, the polar coordinate decomposition ensures that any choice of

Λ+ = Λ− ∈ p in (3.22) gives rise to the same set of SSSG equations; we shall use

Λ+ = Λ− =




0 1 0 · · · 0

−1 0 0 · · · 0

0 0 0 · · · 0
...

...
... · · ·

...

0 0 0 · · · 0



. (4.5)

Then, the elements in the centraliser of Λ+ = Λ− in U(n) are of the form




ei(n−1)φ 0 0 · · · 0

0 ei(n−1)φ 0 · · · 0

0 0
...

... e−2iφM

0 0



, (4.6)

7The explicit form of the SSSG equations corresponding to CP 3 has been recently worked out in [43],

in the context of the study of superstring theory on AdS4 × CP 3.
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where φ is real and M ∈ SU(n− 1). Therefore,

H(+) = H(−) ≃ U(n− 1) (4.7)

and, following [8] and section 3.2, the resulting SSSG equations admit a (non-unique)

Lagrangian formulation provided by a gWZW action associated to the coset U(n)/U(n−1)

with a potential term. It follows the pattern summarised by figure 1.

The simplest case is the reduction of the CP 1 model, which is identical to the S2

sigma model. Then, H(+) = H(−) are trivial, and the corresponding SSSG equation is the

sine-Gordon equation.

The first case with non-trivial gauge groups is provided by the reduction of the CP 2 =

SU(3)/U(2) sigma model, which can be used to describe bosonic string configurations on

Rt × CP 2. In this case,

H(+) = H(−) = {e xT : x ∈ R} ≃ U(1), with T =



i 0 0

0 i 0

0 0 −2i


 , (4.8)

which motivates the parameterisation

γ = e α T




1 0 0

0 cos θ eiϕ sin θ

0 − sin θ cos θ e−iϕ


 e−β T , A

(R)
− = a− T and A

(L)
+ = a+ T (4.9)

in terms of six real fields α, β, θ, ϕ, a+ and a−. Then, the U(1)L × U(1)R gauge transfor-

mations (3.25) read

α→ α+ ρ−, β → α+ ρ+ and a± → a± − ∂±ρ∓, (4.10)

where h± = e ρ± T , and the gauge invariance of the zero-curvature equations (3.26) ensures

that they can be written in terms of the four gauge invariant fields

θ, ϕ, b+ = a+ + ∂+α, and b− = a− + ∂−β. (4.11)

In this case Pohlmeyer reduction gives rise to precisely four partial differential equations.

Two of them are the continuity equations

4∂+b− − ∂−
[(

1 + 3 cos(2θ)
)
b+ + 2cos2 θ ∂+ϕ

]
= 0 (4.12)

and ∂+

[(
1 + 3 cos(2θ)

)
b− − 2 cos2 θ ∂−ϕ

]
− 4∂−b+ = 0, (4.13)

which correspond to (3.30). They can be used to write b+ and b− in terms of a new field,

which can be done in two different ways that lead to different Lagrangians.

Let us consider first the subtraction of (4.13) from (4.12), which reads

∂+

[
3 sin2 θ b− + cos2 θ ∂−ϕ)

]
− ∂−

[
−3 sin2 θ b+ + cos2 θ ∂+ϕ)

]
= 0. (4.14)

It provides the integrability conditions for

b± = ±
1

3 sin2 θ

(
∂±ψ + cos2 θ ∂±ϕ

)
, (4.15)
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where ψ is the new real field. Writing now (4.12) in terms of ψ, and after some trivial

algebra, we get the conservation law

∂µ

[
1

2
∂µψ + 2cot2 θ ∂µ(ψ + ϕ)

]
= 0. (4.16)

Furthermore, using (4.15), the other two equations provided by Pohlmeyer reduction are

∂µ∂
µψ − 4µ+µ− cos θ sinϕ = 0 (4.17)

∂µ∂
µθ +

cos θ

sin3 θ
∂µ(ψ + ϕ)∂µ(ψ + ϕ) + µ+µ− sin θ cosϕ = 0, (4.18)

and it is straightforward to check that (4.16)–(4.18) are the equations of motion of

L = ∂µθ∂
µθ +

1

4
∂µψ∂

µψ + cot2 θ ∂µ(ψ + ϕ)∂µ(ψ + ϕ) + 2µ+µ− cos θ cosϕ, (4.19)

which is the Lagrangian originally obtained by Eichenherr and Honerkamp in [4].

However, there is an alternative way to write b+ and b− in terms of a additional real

field. Consider now the sum of (4.12) and (4.13), which reads

∂+

[
(1 + 3 cos2 θ)b− − cos2 θ ∂−ϕ] − ∂−

[
(1 + 3 cos2 θ)b+ + cos2 θ ∂−ϕ] = 0. (4.20)

Then,

b± =
1

1 + 3 cos2 θ

(
∂±ψ̃ ∓ cos2 θ ∂±ϕ

)
(4.21)

where ψ̃ is another real field. Writing now (4.12) in terms of ψ̃, we get the new conservation

law

∂µ

(
1

1 + 4 cot2 θ

(
3 ∂µψ̃ − ǫµν ∂νϕ

))
= 0. (4.22)

where ǫ01 = ǫ10 = +1. This conservation law and the two other equations provided by

Pohlmeyer reduction written in terms of ψ̃ turn out to be the equations of motion of

L = ∂µθ∂
µθ +

1

1 + 4 cot2 θ

(
9

4
∂µψ̃∂

µψ̃ + cot2 θ ∂µϕ∂
µϕ

−
3

2
ǫµν ∂µψ̃∂νϕ

)
+ 2µ+µ− cos θ cosϕ. (4.23)

To our knowledge, the relationship between this Lagrangian and the Pohlmeyer reduced

CP 2 nonlinear sigma model or, equivalently, bosonic string theory on Rt × CP 2 has not

been pointed out before.

The Lagrangians (4.19) and (4.23) specify different nonlinear sigma models with a

potential term. Notice that the target-space metric corresponding to (4.19) is singular at

θ = 0. In contrast, the metric corresponding to (4.23) is free of singularities, although it

becomes non-invertible at θ = 0. In addition, the Lagrangian (4.23) exhibits a non-trivial

antisymmetric tensor term that is absent in (4.19). Nevertheless, their equations of motion

correspond to the same set of SSSG equations, and it is not difficult to check that they are
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related by a target-space duality transformation like those discussed in [42]. It corresponds

to the canonical transformation

Π = −
3

2
∂xψ̃ and Π̃ = −

3

2
∂xψ, (4.24)

where Π and Π̃ are the canonical momenta associated to ψ and ψ̃ in (4.19) and (4.23),

respectively. On-shell, the equations of the canonical transformations can also be obtained

from the condition that b± and θ are the same in (4.15) and (4.21).

The emergence of two different Lagrangians exhibits the non-uniqueness of the La-

grangian formulation of the SSSG equations pointed out in section 3.2. The construction

presented there provides a Lagrangian action for the SSSG equations corresponding to CP 2

in terms of a G/H = U(2)/U(1) gWZW action with a potential term. That construction re-

quires to reduce the U(1)L×U(1)R gauge symmetry (4.10) using the gauge conditions (3.41),

which depend on the choice of the two homomorphisms ǫL/R : U(1) → U(2) constrained

by the ‘anomaly free’ condition (3.36). In this case, there are only two non-equivalent

possibilities. The first one is

ǫL = ǫR : eiφ → eφ T (4.25)

where T is given by (4.8). The corresponding gauge conditions (3.41) are

(1 + 3 cos2 θ)(a+ + ∂+α) + (1 + cos(2θ))∂+ϕ− 4∂+β = 4a+

and (1 + 3 cos2 θ)(a− + ∂−β) − (1 + cos(2θ))∂−ϕ− 4∂+α = 4a−, (4.26)

which can be solved as

b± = ±
1

3 sin2 θ

(
2∂±(α− β) + cos2 θ ∂±ϕ

)
. (4.27)

The comparison with (4.15) shows that ψ = 2(α − β), and that the residual gauge trans-

formations are indeed of ‘vector type’, which corresponds to ρ+ = ρ− in (4.10). There-

fore, (4.19) is the local Lagrangian that corresponds to the Lagrangian action

S
(V )
gWZW

[
γ,A±

]
−
µ+µ−

2π

∫
d2x Tr

(
Λ+γ

−1Λ−γ
)
, (4.28)

where S
(V )
gWZW denotes the U(2)/U(1) gWZW action of vector type.

The second choice of the two homomorphisms is

ǫL = ǫ−1
R : eiφ → eφ T (4.29)

Then, the gauge conditions (3.41) read

(1 + 3 cos2 θ)(a+ + ∂+α) + (1 + cos(2θ))∂+ϕ− 4∂+β = −4a+

and (1 + 3 cos2 θ)(a− + ∂−β) − (1 + cos(2θ))∂−ϕ− 4∂+α = −4a−, (4.30)

and they lead to

b± =
1

1 + 3 cos2 θ

(
2∂±(α+ β) ∓ cos2 θ ∂±ϕ

)
. (4.31)
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Looking now at (4.21), it shows that ψ̃ = 2(α + β), and that the residual gauge transfor-

mations are of ‘axial type’; namely, they corresponds to ρ+ = −ρ− in (4.10). Therefore,

the Lagrangian (4.23) corresponds to the Lagrangian action

S
(A)
gWZW

[
γ,A±

]
−
µ+µ−

2π

∫
d2x Tr

(
Λ+γ

−1Λ−γ
)
, (4.32)

where S
(A)
gWZW denotes now the U(2)/U(1) gWZW action of axial type. The two ac-

tions (4.28) and (4.32) have a global U(1) symmetry that gives rise to a target-space

duality symmetry that relates them off-shell [42]. It coincides with the transformation that

relates the two Lagrangians (4.19) and (4.23).

4.2 Pohlmeyer reduction of principal chiral models: the HSG theories

We shall now illustrate the variety of SSSG equations associated to a single symmetric space

of rank larger than 1 by discussing the Pohlmeyer reduction of nonlinear sigma models with

target-space a symmetric space of type II; namely, F/G = G×G/GD with G is a compact

simple Lie group. In the following, and just for simplicity, we will also assume that G is

simply laced. In this case, G × G = {(g1, g2); g1, g2 ∈ G} and GD = {(γ, γ); γ ∈ G},

which exhibits that GD is trivially isomorphic to G. Moreover, the action of the gauge

transformations (2.2) on G×G is (g1, g2) → (g1γ, g2γ), and it is straightforward to check

that G×G/GD is also isomorphic to G, with the isomorphism given by the map (g1, g2) →

g1g
−1
2 . Therefore, G × G/GD is isomorphic to G, and the sigma model with target-space

G×G/GD is just the principal chiral model corresponding to G.

The Lie algebra of F = G×G is f = g⊕g, where g is the Lie algebra of G. Its elements

are pairs (a, b) with a, b ∈ g, and the decomposition (2.1) takes the form

gD = {(a, a) : a ∈ g} and p = {(a,−a) : a ∈ g}, (4.33)

which is orthogonal with respect to Tr
(
(a, b) · (c, d)

)
= Tr(ac) + Tr(bd). As explained

in section (3), Pohlmeyer reduction involves the choice of two constant elements Λ+ and

Λ− in a fixed maximal abelian subspace a ⊂ p. In this case, it is not difficult to show

that the maximal abelian subspaces of p are in one-to-one correspondence with the Cartan

subalgebras of g. Namely, if s ⊂ g is a Cartan subalgebra, the corresponding maximal

abelian subspace is

a = {(a,−a) : a ∈ s} ⊂ p, (4.34)

which exhibits that rank(G×G/GD) = rank(G).

Let us introduce a Cartan-Weyl basis for the complexification of g, which consists of

a fixed Cartan subalgebra s with r = rank(G) generators {h1, . . . , hr} and step operators

E~α for each root ~α, so that they satisfy
[
~λ · ~h, E~α

]
= (~λ · ~α) E~α and

[
E~α, E−~α

]
= ~α · ~h. (4.35)

In terms of this basis, g is spanned by the (anti-Hermitian) generators ih1, . . . , ihr, i(E~α +

E−~α) and E~α−E−~α. Then, the two constant elements of a required to perform the reduction

can be written as

Λ+ = (~λ+ · ~h, −~λ+ · ~h) and Λ− = (~λ− · ~h, −~λ− · ~h), (4.36)
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where ~λ+ and ~λ− are two real r-dimensional vectors. In the following, it will be convenient

to fix a basis of simple roots {~α1, . . . , ~αr} and the corresponding basis of fundamental

weights {~λ1, . . . , ~λr}, so that ~λi · ~αj = δij . Then, the two vectors can be written as

~λ+ =
r∑

i=1

m+
i
~λi and ~λ− =

r∑

i=1

m−
i
~λi, (4.37)

where m+
1 , . . . ,m

+
r and m−

1 , . . . ,m
−
r are real constants. In this case, the reduction proce-

dure described in section 3 gives rise to a different set of SSSG equations for each non-

equivalent choice of those constant coefficients. We will consider just three choices that

lead to rather different sets of equations.

The first one corresponds to8

m+
i ,m

−
i 6= 0 ∀ i = 1, . . . , r, (4.38)

which ensures that ~λ+ and ~λ− are not orthogonal to any root of g. Then, H(+) = H(−) is

the maximal torus U(1)r of GD ≃ G associated to the Cartan subalgebra s. The resulting

SSSG equations are the equations of motion of the so-called homogeneous sine-Gordon

(HSG) theories [12], which are two-dimensional integrable theories whose classical and

quantum properties have been extensively studied in the literature [44 – 46]. Their La-

grangian formulation is provided by a gWZW action corresponding to the coset G/U(1)r

with a potential term fixed by Λ+ and Λ−.

This first case exhibits two interesting features of the reduced models associated to

symmetric spaces of rank larger than 1. The first one is that the resulting set of integrable

equations depends on adjustable parameters that play the role of coupling constants. This is

so because the form of H(+) and H(−) is independent of the precise value of the parameters

m+
i and m−

i in (4.37) as far as the conditions (4.38) are satisfied. Those parameters

determine the mass spectrum of the theory. The spectrum of fundamental particles can be

easily obtained by studying the linearized form of the gauge-fixed equations (3.32) around

the obvious vacuum configuration γ0 = 1; namely,

γ = e iφ ≈ 1 + iφ ⇒

{
∂+∂−φ = µ2

[
Λ+, [Λ−, φ]

]
,

and Ph+

(
∂+φ

)
= Ph−

(
∂−φ

)
= 0,

(4.39)

where φ ∈ g. Then, for each root ~α, the configuration φ = ψE~α − ψ∗E−~α corresponds to a

fundamental particle of mass9

m2
~α = µ2(~α · ~λ+)(~α · ~λ−) 6= 0, (4.40)

whose value depends on m+
i and m−

i . This particle carries a U(1)r Noether charge whose

value is characterised by ~α. The equations of motion of the HSG theories also admit soliton

solutions whose masses are also determined by the parameters m±
i [47].

8This case has been recently considered in [20].
9Since m2

~α has to be positive, γ0 = 1 corresponds to a true vacuum configuration only if all the constant

parameters m±

1 , . . . , m±
r are of the same sign [42, 48].
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The second feature is the non-uniqueness of the Lagrangian formulation, which involves

the choice of the homomorphisms ǫL and ǫR in (3.35). For the HSG theories, it is customary

to choose them such that ǫL = 1 and ǫR = τ̂ [12], where τ̂ can be any element of Λ∗
w(G),

the (discrete) group of automorphism of the dual lattice to the weight lattice of G [42]. The

relationship between the different τ̂ -dependent Lagrangian formulations has been recently

investigated making use of target-space duality symmetries, with the result that not all

the Lagrangian theories seem to be related by standard T-duality transformations for

G = SU(n) with n ≥ 5 and E6 [48]. It would be interesting to revise those results on the

light of the interpretation of (3.41) as gauge conditions.

Other non-equivalent possible choices of the parameters in (4.37) are obtained by

making some of them vanish. Since our purpose here is just to illustrate the differences

between the resulting sets of equations, we will now restrict ourselves to G = SU(3) and

use its defining representation in terms of 3 × 3 unitary matrices. Then, we will first

consider the choice m+
i = m−

i = δi,2 in (4.37), which is the limit m+
1 ,m

−
1 → 0 of (4.38). It

corresponds to

Λ+ = Λ− =
1

3




1 0 0

0 1 0

0 0 −2


 , (4.41)

whose centralisers in SU(3) are of the form

H(+) = H(−) =




∗ ∗ 0

∗ ∗ 0

0 0 ∗


 ≃ U(2) . (4.42)

Therefore, the Lagrangian formulation of the resulting SSSG equations is given by a gWZW

action corresponding to the coset SU(3)/U(2) with a potential term. The spectrum of

fundamental particles can be obtained by studying the linearized equations (4.39), which

show that the configurations of the form

φ =




0 0 φ13(τ, x)

0 0 φ23(τ, x)

−φ∗13(τ, x) −φ∗23(τ, x) 0


 , (4.43)

describe a U(2) multiplet of particles of equal mass fixed by µ.

Another interesting non-equivalent choice of the parameters is m+
i = δi,2 and m−

i =

δi,1, which is the limit m+
1 ,m

−
2 → 0 of (4.38). It corresponds to

Λ+ =
1

3




1 0 0

0 1 0

0 0 −2


 and Λ− =

1

3




2 0 0

0 −1 0

0 0 −1


 , (4.44)

whose centralisers are now of the form

H(+) =




∗ ∗ 0

∗ ∗ 0

0 0 ∗


 and H(−) =




∗ 0 0

0 ∗ ∗

0 ∗ ∗


 . (4.45)
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Therefore, in this case H(+) 6= H(−), but both H(+) and H(−) are isomorphic to U(2).

Then, the Lagrangian formulation of the corresponding SSSG equations is also provided

by a gWZW action associated to the coset SU(3)/U(2) with a potential term, but now ǫL is

necessarily 6= ǫR and the relevant coset is always asymmetric. Clearly, this case falls outside

the class considered by Bakas, Park and Shin in [8]. Once more, the spectrum of funda-

mental particles can be obtained by studying the linearized equations (4.39). In this case,

φ =




0 φ12(x−) φ13(τ, x)

−φ∗12(x−) 0 φ23(x+)

−φ∗13(τ, x) −φ∗23(x+) 0


 (4.46)

describes a massive particle of mass µ associated to φ13, and two massless particles asso-

ciated to φ12 (right-mover) and φ23 (left-mover).

5. SSSG equations from sigma models with target-space AdSn

When the symmetric space F/G is of indefinite signature, G is noncompact and the polar

coordinate decomposition used in section 3 to solve the constraints (1.3) is not satisfied

anymore. In fact, the general theory of symmetric spaces is very extensive [32, 49] and

we are not aware of any general procedure to solve them. Here, we will just consider the

SSSG equations associated to the anti-de Sitter spaces AdSn, which exhibit some features

different to those of the equations corresponding to symmetric spaces of definite signature

discussed in section 3. One of them concerns the identification of the conditions (1.1) with

the Virasoro constraints of a classical bosonic string theory. When M = F/G is of definite

signature, T++ and T−− are positive definite and, consequently, µ2 > 0 in (1.1). Then, the

relevant curved space-time is always Rt×M [13]. In contrast, if the signature of F/G is in-

definite, the sign of T++ and T−− is not definite and µ2 is not constrained to be positive any-

more. This enables the construction of SSSG equations corresponding to µ2 < 0 and µ2 = 0

that can be used to describe bosonic string configurations on M×S1
ϑ [19] and on M [21, 22],

respectively. Obviously, the case µ2 = 0 should be expected to be different to the others,

since the corresponding constraints do not break the (classical) conformal invariance of the

sigma model. In fact, only the reductions with µ2 6= 0 follow the pattern summarised by

figure 1. In particular, the SSSG equations corresponding to µ2 = 0 are not of NAAT type,

and the construction of section 3.2 cannot be used to find their Lagrangian formulation.

The anti-de Sitter space

AdSn =
{
(x1, . . . , xn+1) ∈ R

n+1 : −x2
1 − x2

2 + x2
3 + · · · + x2

n+1 = −1
}

= SO(2, n − 1)/SO(1, n − 1) (5.1)

is a symmetric space of Lorentzian (1, n−1) signature. It is worth noticing that SO(2, n−1)

is non-connected (it has two different components), and that only the identity component

has to be considered in (5.1) [32, Chapter 11]. Using the (n + 1) × (n + 1) matrix repre-

sentation of SO(2, n − 1) and its diagonally embedded SO(1, n − 1) subgroup, the form of

– 22 –



J
H
E
P
1
0
(
2
0
0
8
)
0
8
7

the elements r ∈ g and k ∈ p in (2.1) is

r =




0 0 0 · · · 0

0 0 a1 · · · an−1

0 a1
...

... N

0 an−1




and k =




0 −v0 v1 · · · vn−1

v0 0 0 · · · 0

v1 0 0 · · · 0
...

...
...

...

vn−1 0 0 · · · 0




≡ k̂[v], (5.2)

where N = −NT denotes a (n − 1) × (n − 1) skew-symmetric matrix and v =

(v0, v1, . . . , vn−1)
T is a real n-dimensional column vector. It is straightforward to check

that this decomposition is orthogonal with respect to the trace form and, moreover, that

the rank of AdSn is 1. The Lagrangian of the nonlinear sigma model with target-space

AdSn is of the form (2.5) with κ = −1; namely,

L = +
1

2
Tr
(
JµJ

µ
)

⇒ T±± = +
1

2
Tr
(
J±J±

)
, (5.3)

so that the contribution of the spacelike configurations to T±± is positive definite.

In order to solve the constraints (1.3), we shall proof an analogue of the polar coordinate

decomposition satisfied by the symmetric spaces of definite signature. It is motivated by

the explicit proof of the polar coordinate decomposition for Sn presented at the beginning

of appendix B. Consider a generic element of SO(1, n − 1) ⊂ SO(2, n − 1),10

g =

(
1 0

0 N−1

)
with N ∈ SO(1, n − 1) . (5.4)

The transformation k̂[v] → g−1k̂[v]g amounts to v → Nv, which is a (1, n−1) dimensional

Lorentz transformation of the vector v that, by definition, preserves the quadratic form

Tr(k̂2[v])/2 = −v2
0 + v2

1 + · · ·+ v2
n−1. This provides a natural classification of the elements

k ∈ p according to the sign of Tr(k2): ‘spacelike’ if Tr(k2) > 0, ‘timelike’ if Tr(k2) < 0, and

‘lightlike’ if Tr(k2) = 0. Then, using well known properties of the Lorentz group, in each

case it is possible to construct a transformation that takes the file vector to some specific

canonical form. Namely,

(v0, v1, . . . , vn−1) → µ(0, 0, 0, . . . , 1) if Tr(k̂2[v]) = +2µ2 > 0

(v0, v1, . . . , vn−1) → µ(1, 0, 0, . . . , 0) if Tr(k̂2[v]) = −2µ2 < 0

(v0, v1, . . . , vn−1) → µ(1, 0, . . . , 0, 1) if Tr(k̂2[v]) = 0, (5.5)

where µ denotes a real number. In addition, for AdS2 there is a fourth possibility:

(v0, v1) → µ(1,−1) if Tr(k̂2[v]) = 0, (5.6)

which is non-equivalent to the others because (1,−1)T 6= N(1, 1)T for any N ∈ SO(1, 1).

10The diagonally embedded SO(1, n − 1) subgroup of SO(2, n − 1) is the isotropy group of the point

(1, 0, . . . , 0) ∈ AdSn.
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Taking all this into account, the analogue of the polar coordinate decomposition for

AdSn can be stated as follows. For any k ∈ p there exists g ∈ SO(1, n− 1) and µ ∈ R such

that

g −1kg =





µ k̂[(0, . . . , 0, 1)] ≡ µ T (s), if Tr(k2) > 0,

µ k̂[(1, 0, . . . , 0)] ≡ µ T (t), if Tr(k2) < 0,

µ k̂[(1, 0, . . . , 0, 1)] ≡ µ T (l), if Tr(k2) = 0.

(5.7)

Furthermore, for AdS2 there is the fourth non-equivalent possibility

g −1kg = µ k̂[(1,−1)] ≡ µ T̃ (l), if Tr(k2) = 0. (5.8)

It is worth comparing (5.7) with (B.4). Notice that a(s) = R T (s), a(t) = R T (t) and

a(l) = R T (l) are three maximal (one-dimensional) abelian subspaces of p which, according

to (5.7), are not conjugated under the adjoint action of G = SO(1, n−1). This is in contrast

to the case of symmetric spaces F/G of definite signature, where the polar coordinate

decomposition ensures that all the maximal abelian subspaces a ⊂ p are conjugated under

the adjoint action of G (see section 3). The generalised decomposition (5.7) exhibits that

for AdSn the constraints Tr(J2
±) = constant are the only independent ones in (1.3) or, in

other words, that the only ‘primitive’ chiral densities are T++ and T−− akin to the case of

sigma models with target-space a symmetric space of definite signature and rank 1 [26].

The decomposition summarised by (5.7) makes possible to construct the SSSG equa-

tions corresponding to the sigma models with target-space AdSn by following the procedure

of section 3. First, taking (2.8) into account, we can apply (5.7) to the currents J± so that

the general solution to the constraints (1.3) is of the form

J± = µ± g±Λ±g
−1
± , (5.9)

where g± ∈ SO(1, n − 1), µ+ and µ− are real numbers, and Λ+ and Λ− are constant and

equal to either T (s), or T (t), or T (l) (or T̃ (l) for AdS2). Then, (2.4) and (5.9) enable the

‘partial reduction’ gauge condition (3.22),

J+ = µ+Λ+ and J− = µ−γ
−1Λ−γ,

where γ = g −1
− g+ ∈ SO(1, n− 1). In the rest of this section, we shall discuss the equations

corresponding to Λ+ = Λ−. We will also work out the explicit form of the SSSG equations

corresponding to AdS2 and AdS3.

5.1 ‘Spacelike’ reduction: bosonic strings on Rt ×AdSn

We start with

Λ+ = Λ− = T (s), (5.10)

which is the solution to the constraints

T++ = +µ2
+ > 0 and T−− = +µ2

− > 0. (5.11)

Then, provided that µ2
+ = µ2

− = µ2, the solutions to the corresponding SSSG equations

describe bosonic string configurations in Rt×AdSn using the orthonormal gauge condition
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t = µτ [13]. In this case, the elements in the centraliser of T (s) = k̂[(0, . . . , 0, 1)] in

G = SO(1, n − 1) are of the form



1 0 0

0 N 0

0 0 1


 , with N ∈ SO(1, n − 2) (5.12)

which shows that H(+) = H(−), and that both are isomorphic to SO(1, n − 2). Then,

following [8] and section 3.2, the Lagrangian formulation of the resulting SSSG equations

is provided by a gWZW action associated to the coset SO(1, n − 1)/SO(1, n − 2) with a

potential term. In this case the reduction follows the pattern summarised by figure 1.

The simplest example corresponds to n = 2, where

Λ+ = Λ− = k̂[(0, 1)] =




0 0 1

0 0 0

1 0 0


 . (5.13)

Since the field γ takes values in (the identity component of) SO(1, 1), which is a one-

parameter (abelian) group, it can be parameterised as

γ =




1 0 0

0 coshχ sinhχ

0 sinhχ coshχ


 = exp




0 0 0

0 0 χ

0 χ 0


 (5.14)

in terms of a real field χ, and it is straightforward to check that H(+) and H(−) are trivial.

The resulting SSSG equation is the well-known sinh-Gordon equation

∂+∂−χ− µ+µ− sinhχ = 0, (5.15)

which is the equation of motion of the Lagrangian

L = ∂+χ∂−χ+ µ+µ− coshχ. (5.16)

It is worth noticing that the constraints (5.11) do not fix the sign of µ+ and µ− and, in

fact, the potential is bounded from below only if we take µ+µ− < 0.

The first case with non-trivial gauge groupsH(+) andH(−) is provided by the reduction

of the AdS3 sigma model. Then

Λ+ = Λ− = k̂[(0, 0, 1)] =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


 (5.17)

and, using the notation

b1 =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


 = +bT1 and r =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0


 = −rT , (5.18)
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the centraliser of Λ+ = Λ− in SO(1, 2) is

H(+) = H(−) = {e x b1 ; x ∈ R} ≃ SO(1, 1). (5.19)

This motivates the parameterisation

γ = e α b1 e θ r e−β b1 ∈ SO(1, 2), (5.20)

in terms of three real fields α, β and θ. Correspondingly, the gauge fields in (3.24) are

A
(R)
− = a− b1 and A

(L)
+ = a+ b1, (5.21)

with a± ∈ R, and the SO(1, 1)L × SO(1, 1)R gauge transformations (3.25) read

α→ α+ ρ−, β → β + ρ+, and a± → a± − ∂±ρ∓, (5.22)

where h± = e ρ±b1 . Then, in terms of the three gauge invariant fields

θ, b+ = a+ + ∂+α and b− = a− + ∂−β, (5.23)

the zero-curvature equations of motion (3.26) become

∂+∂−θ + (b+b− − µ+µ−) sin θ = 0 (5.24)

∂+

(
(1 + cos θ)b−

)
− ∂−

(
(1 + cos θ)b+

)
= 0 (5.25)

∂+

(
(1 − cos θ)b−

)
+ ∂−

(
(1 − cos θ)b+

)
= 0. (5.26)

They are related to the SSSG equations (B.12)–(B.14) corresponding to SO(3) by means of

the analytic continuation b± → ib±. According to section 3.2, these SSSG equations admit

a Lagrangian formulation in terms of a SO(1, 2)/SO(1, 1) gWZW action with a potential

term. Since SO(1, 1) is a one-parameter (abelian) group, like U(1) in (4.8) or SO(2) in (B.7),

there are two different Lagrangian actions, of ‘axial’ or ‘vector’ type, related by a target-

space duality symmetry like those discussed in [42]. They give rise to two local Lagrangians

that can obtained directly from the SSSG equations. They are of the general form

L
[
U, V, λ

]
=
∂µU ∂µV

1 − UV
− λ UV (5.27)

where U and V are complex fields subjected to specific reality conditions. Notice that

this Lagrangian specifies different analytic continuations of the complex sine-Gordon

Lagrangian (B.15), which corresponds to U = +V ∗.

The procedure to establish the correspondence between the SSSG equations (5.24)–

(5.26) and the equations of motion of (5.27) is identical to the one used to find the La-

grangians of the reduced CP 2 and S3 sigma models in section 4.1 and appendix B, respec-

tively. First, we use (5.25) to write b+ and b− in terms of a new real field ̺,

b± =
2

1 + cos θ
∂±̺. (5.28)
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Then, (5.24) and (5.26) become

∂µ

(
tan2(θ/2)∂µ̺

)
= 0

∂+∂−θ +
4 sin θ

(1 + cos θ)2
∂+̺∂−̺+ µ+µ− sin θ = 0, (5.29)

which are the equations of motion of (5.27) with

U = sin(θ/2)e ̺, V = sin(θ/2)e −̺ and λ = +µ+µ−; (5.30)

namely,

L =
1

4
∂µθ∂

µθ − tan2(θ/2)∂µρ∂
µρ− µ+µ− sin2(θ/2). (5.31)

In a completely equivalent way, we can use (5.26) to write

b± = ±
2

1 − cos θ
∂± ˜̺, (5.32)

which also leads to the equations of motion of (5.27) but, in this second case,

U = cos(θ/2)e e̺, V = cos(θ/2)e −e̺ and λ = −µ+µ−, (5.33)

that corresponds to

L =
1

4
∂µθ∂

µθ − cot2(θ/2)∂µρ̃∂
µρ̃+ µ+µ− cos2(θ/2). (5.34)

The parameterisations (5.30) and (5.33) are solutions to the reality conditions

U∗ = U, V ∗ = V and 0 ≤ UV ≤ 1, (5.35)

so that the Lagrangian (5.27) subjected to them is related to the complex sine-Gordon

Lagrangian (B.15) by means of the analytic continuation

ψ → U ∈ R and ψ∗ → V ∈ R (5.36)

or, equivalently, φ→ i̺ and φ̃→ i˜̺ in (B.18) and (B.20), respectively. It is a generalization

of the sine-Gordon Lagrangian with an internal dilatation symmetry U → λU , V → λ−1V ,

λ ∈ R.

5.2 ‘Timelike’ reduction: bosonic strings on AdSn × S1
ϑ

Next, we shall consider

Λ+ = Λ− = T (t), (5.37)

which is the solution to the constraints

T++ = −µ2
+ < 0 and T−− = −µ2

− < 0. (5.38)

Provided that µ2
+ = µ2

− = µ2, the solutions to the corresponding SSSG equations describe

bosonic string configurations on the curved space-time AdSn×S
1
ϑ using the gauge condition
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ϑ = µτ , where ϑ is the S1 angular coordinate. This type of reduction of AdSn sigma models

is the relevant one in the generalisation of Pohlmeyer reduction proposed in [19, 20, 23]. The

elements in the centraliser of T (t) = k̂[(1, 0, . . . , 0)] in G = SO(1, n−1) are now of the form




1 0 0

0 1 0

0 0 N


 , with N ∈ SO(n− 1) , (5.39)

which means that H(+) = H(−), and that both are isomorphic to SO(n−1). Then, following

the approach of [8] and section 3.2, the Lagrangian formulation of the resulting SSSG equa-

tions is provided by a gWZW action associated to the coset SO(1, n−1)/SO(n−1) with a

potential term. Again, in this case the reduction follows the pattern summarised by figure 1.

The simplest case corresponds to n = 2, where

Λ+ = Λ− = k̂[(1, 0)] =




0 −1 0

1 0 0

0 0 0


 (5.40)

and H(+) = H(−) are trivial. Using the parameterisation (5.14) for the field γ, the resulting

equation is the sinh-Gordon equation

∂+∂−χ+ µ+µ− sinhχ = 0. (5.41)

Again, the first case with non-trivial gauge groups H(+) and H(−) corresponds to

AdS3. Then

Λ+ = Λ− = k[(1, 0, 0)] =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 (5.42)

and, using the notation (5.18), the centraliser of Λ+ = Λ− in SO(1, 2) is now

H(+) = H(−) = {e x r; x ∈ R} ≃ SO(2), (5.43)

which motivates the parameterisation

γ = e α r e χ b1 e−β r ∈ SO(1, 2), (5.44)

where the three fields α, β and χ are real. Correspondingly, the gauge fields in (3.24) are

A
(R)
− = a− r and A

(L)
+ = a+ r, (5.45)

with a± ∈ R, and the SO(2)L × SO(2)R gauge transformations (3.25) read

α→ α+ ρ−, β → β + ρ+, and a± → a± − ∂±ρ∓, (5.46)
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where h± = e ρ±r. In terms of the gauge invariant fields χ, b+ = a+ + ∂+α and

b− = a− + ∂−β, the zero-curvature equations of motion (3.26) are

∂+∂−χ− (b+b− − µ+µ−) sinhχ = 0 (5.47)

∂+

(
(1 + coshχ)b−

)
− ∂−

(
(1 + coshχ)b+

)
= 0 (5.48)

∂+

(
(1 − coshχ)b−

)
+ ∂−

(
(1 − coshχ)b+

)
= 0, (5.49)

which are related to the SSSG equations (B.12)–(B.14) corresponding to SO(3) by means

of the analytic continuation θ → iχ. These equations admit a Lagrangian formulation in

terms of a SO(1, 2)/SO(2) gWZW action with a potential term that, again, gives rise to

two local Lagrangians of the form (5.27). They can be found by repeating the procedure

used for (5.24)–(5.26).

First, we use (5.48) to write

b± =
2

1 + coshχ
∂±φ, (5.50)

so that (5.47) and (5.49) become

∂µ

(
tanh2(χ/2)∂µφ

)
= 0

∂+∂−χ−
4 sinhχ

(1 + coshχ)2
∂+φ∂−φ+ µ+µ− sinhχ = 0, (5.51)

which are the equations of motion of

L =
1

4
∂µχ∂

µχ+ tanh2(χ/2)∂µφ∂
µφ− µ+µ− sinh2(χ/2). (5.52)

It corresponds to (5.27) with

U = i sinh(χ/2)e iφ, V = i sinh(χ/2)e −iφ and λ = +µ+µ−. (5.53)

In a completely equivalent way, we can use (5.49) to write

b± = ±
2

1 − coshχ
∂±φ̃, (5.54)

which also leads to the equations of motion of (5.27) but, now,

U = cosh(χ/2)e iφ̃, V = cosh(χ/2)e −iφ̃ and λ = −µ+µ−, (5.55)

corresponding to

L =
1

4
∂µχ∂

µχ+ coth2(χ/2)∂µφ∂
µφ− µ+µ− cosh2(χ/2). (5.56)

Remarkably, the two parameterisations (5.53) and (5.55) satisfy different reality conditions.

The first one corresponds to

U = −V ∗, (5.57)
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and, as exhibited by (5.51), the resulting Lagrangian is an generalization of the sinh-Gordon

Lagrangian with an internal U(1) degree of freedom; namely,

−L
[
U,−U∗, λ

]
=
∂µU ∂µU∗

1 + UU∗
+ λ UU∗ ≡ LCShG, (5.58)

which is related to the complex sine-Gordon Lagrangian (B.15) by means of the analytic

continuation

ψ → U and ψ∗ → −U∗ (5.59)

or, equivalently, by θ → iχ in (B.18). Correspondingly, the second parameterisation (5.55)

solves the reality conditions

U = +V ∗ and |U | ≥ 1 (5.60)

and, therefore, it describes solutions to the equations of motion of the complex sine-Gordon

Lagrangian (B.15) with |ψ| ≥ 1.

5.3 ‘Lightlike’ reduction: bosonic strings on AdSn

Finally, we shall consider the SSSG equations specified by the constraints

T++ = T−− = 0, (5.61)

whose solutions describe bosonic string configurations on AdSn [21, 22]. According to (5.7),

they correspond to

Λ+ = Λ− = T (l). (5.62)

Obviously, the constraints (5.61) do not break the classical conformal invariance of the

original sigma model and, in fact, the SSSG equations resulting from this type of reduction

do not follow the pattern summarised by figure 1.

In practice, most of the differences can be traced back to the fact that

Ker
(
AdT (l)

)
∩ Im

(
AdT (l)

)
6= {0}, (5.63)

which is possible because Tr(T (l) 2) = 0. Then, the zero-curvature condition (3.29) does not

imply (3.30), which has two important direct consequences. The first one is that the gauge-

fixing conditions (3.31) cannot be imposed and, therefore, the resulting SSSG equations

cannot be written as a system of NAAT equations. The second concerns the derivation

of their Lagrangian formulation, which involves the gauge-fixing conditions (3.41). In

appendix A we show that the consistency of those conditions relies on the identities (3.30).

Therefore, the approach of [8] and section 3.2 cannot be used to derive a Lagrangian

formulation for the SSSG equations corresponding to the constraints (5.61).

Eq (5.63) can be easily verified by looking at the generic form of the elements in

Ker
(
AdT (l)

)
and Im

(
AdT (l)

)
, which is




0 −p 0 p

p 0 a 0

0 aT Q −aT

p 0 a 0


 and




0 −p s p

p 0 a q

sT aT 0 −aT

p q a 0


 , (5.64)
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respectively, where p and q are real numbers, a and s are real (n − 2)-dimensional file

vectors, and QT = −Q is a (n− 2) × (n− 2) skew-symmetric matrix. Clearly,



0 −p 0 p

p 0 a 0

0 aT 0 −aT

p 0 a 0


 ∈ Ker

(
AdT (l)

)
∩ Im

(
AdT (l)

)
6= {0} (5.65)

for any value of p and a. Furthermore,



0 −r 0 −r

r 0 a 0

0 aT 0 aT

−r 0 −a 0


 /∈ Ker

(
AdT (l)

)
∪ Im

(
AdT (l)

)
, (5.66)

which exhibits that the decompositions (3.18) are actually not satisfied in this case.

According to (5.64), the infinitesimal generators of the centraliser of T (l) =

k̂[(1, 0, . . . , 0, 1)] in SO(1, n − 1) are of the form



0 0 · · · 0

0 0 a 0
... aT Q −aT

0 0 a 0



. (5.67)

They generate the little group of the real n-dimensional vector v = (1, 0, . . . , 0, 1)T in

SO(1, n − 1). Therefore, H(+) = H(−), and they are isomorphic to the noncompact

Euclidean group E(n − 2), which is the symmetry group of (n − 2)-dimensional Eu-

clidean space [50]. Then, as explained in section 3, the corresponding SSSG equations

are zero curvature equations of the form (3.26) defined on the left-right asymmetric coset

SO(1, n − 1)/EL(n− 2) × ER(n− 2).

We have already pointed out that the constraints (5.61) do not break the conformal

invariance of the original sigma model. In fact, the corresponding SSSG equations are

invariant under the conformal transformation

x± → e−η± x±, γ → e−η−B γ e η+B ,

A
(L)
+ → e η+ e−η−B A

(L)
+ e η−B , A

(R)
− → e η− e−η+B A

(R)
− e η+B , (5.68)

where η+ = η+(x+) and η− = η−(x−) are real-valued chiral functions, and

B =




0 0 · · · 0

0 0 · · · 1
...

...
...

...

0 1 · · · 0




satisfies [B,T (l)] = T (l). (5.69)

This can be checked as follows. Let us write the zero-curvature condition (3.26) as

[L+,L−] = 0, where

L+ = ∂+ +γ−1∂+γ+γ−1A
(L)
+ γ+zµ+ Λ+ and L− = ∂−+A

(R)
− +z−1µ− γ

−1Λ−γ. (5.70)
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Then, under (5.68), L+ and L− transform as

L+ → e η+ e−η+B L+e η+B and L− → e η− e−η+B L−e η+B , (5.71)

which explicitly preserve the form of the zero-curvature condition. It is worth noticing

that, in terms of the reduced currents (3.22) and taking (2.4) into account, the conformal

transformation (5.68) corresponds simply to J± → e η± J±.11

The simplest example corresponds to n = 2, where H(+) and H(−) are trivial and the

parameterisation of the field γ is given by (5.14). Then,

Λ+ = Λ− = k̂[(1, 1)] =




0 −1 1

1 0 0

1 0 0


 , (5.72)

and the resulting SSSG equation is the trivial one, ∂+∂−χ = 0. However, taking (5.8)

into account, for AdS2 there is a second, non-equivalent solution to the constraints (5.61);

namely,

Λ+ = T (l) = k̂[(1, 1)] =




0 −1 1

1 0 0

1 0 0


 and Λ− = T̃ (l) = k̂[(1,−1)] =




0 −1 −1

1 0 0

−1 0 0


 .

(5.73)

As noticed originally in [20], it leads to the SSSG equation

∂+∂−χ+ 2µ+µ−e χ = 0, (5.74)

which is the well known Liouville equation whose Lagrangian is

L = ∂+χ∂−χ− 2µ+µ−e χ. (5.75)

Since [B, T̃ (l)] = −T̃ (l), the transformation (5.68) reads now

x± → e −η± x±, γ → e η−B γ e η+B,

A
(L)
+ → e η+ e +η−B A

(L)
+ e−η−B , A

(R)
− → e η− e−η+B A

(R)
− e η+B (5.76)

and, in this case, it corresponds to χ → χ + η+ + η−, which summarises the conformal

symmetry of (5.74).

The first case with non-trivial gauge groups H(+) and H(−) is the reduction of AdS3

with Λ+ = Λ− = k[(1, 0, 1)]. However, it will be more useful to consider the equivalent

11Since Λ+ = Λ− = T (l), this can be easily checked as follows

J− = µ−γ−1Λ−γ
(5.68)
−−−−−→ e −η+B (e η

− J−)e η+B (2.4)
−−−−−→ e η

− J−,

and J+ = µ+Λ+

(2.4)
−−−−−→ e η+B J+ e −η+B = e η+ J+.
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choice

Λ+ = k[(1, 0, 1)] =




0 −1 0 1

1 0 0 0

0 0 0 0

1 0 0 0


 and Λ− = k[(1, 0,−1)] =




0 −1 0 −1

1 0 0 0

0 0 0 0

−1 0 0 0


 , (5.77)

whose centralisers in SO(1, 2) are

H(+) = {e x g+; x ∈ R} ≃ E(1) and H(−) = {e x g− ; x ∈ R} ≃ E(1), (5.78)

with

g+ =




0 0 0 0

0 0 1 0

0 1 0 −1

0 0 1 0


 and g− =




0 0 0 0

0 0 1 0

0 1 0 1

0 0 −1 0


 . (5.79)

It is worth noticing that g3
± = 0 and, consequently,

e x g+ =




1 0 0 0

0 1 + x2

2 x −x2

2

0 x 1 −x

0 x2

2 x 1 − x2

2


 and e x g− =




1 0 0 0

0 1 + x2

2 x x2

2

0 x 1 x

0 −x2

2 −x 1 − x2

2


 . (5.80)

Eq. (5.78) motivates the parameterisation

γ = e α g− e χ B e−β g+ ∈ SO(1, 2), (5.81)

where the fields α, β and χ are real, and B is given by (5.69).12 Correspondingly, the

gauge fields in (3.24) are

A
(R)
− = a− g+ and A

(L)
+ = a+ g−, (5.82)

with a± ∈ R, and the E(1)L × E(1)R gauge transformations (3.25) read

α→ α+ ρ−, β → β + ρ+, and a± → a± − ∂±ρ∓, (5.83)

where h± = e ρ±g± . In terms of the gauge invariant fields χ, b+ = a+ + ∂+α and

b− = a− + ∂−β, the zero-curvature equations of motion (3.26) are now

∂+∂−χ+ 2e χ
(
b+b− + µ+µ−

)
= 0 (5.84)

∂−(e χb+) = ∂+(e χb−) = 0. (5.85)

These equations exhibit the conformal symmetry summarised by (5.76), which in this case

reads

x± → e−η± x±, χ→ χ+ η+ + η− and b± → e±(η+−η−)b±. (5.86)

12It can be easily checked that Λ− = γ−1Λ+γ for β = α and χ = − ln α2, which confirms that

choosing Λ+ = Λ− = k[(1, 0, 1)] is indeed equivalent to (5.77). In particular, if α2 → +∞, then

γ → diag(1, 1,−1,−1), which is in (the identity component of) SO(1, 2) ⊂ SO(2, 2).
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The usual way to deal with (5.84)–(5.85) is to explicitly break conformal invariance by

considering a particular solution to the two equations (5.85) [21, 22],

b+ = µ+e−χ u(x+) and b− = µ−e−χ v(x−). (5.87)

Then, (5.84) becomes

∂+∂−χ+ 2µ+µ−
(
e χ + u(x+)v(x−)e−χ

)
= 0, (5.88)

which can be transformed either in the sinh-Gordon equation ∂+∂−χ+ 4µ+µ− sinhχ = 0

or the cosh-Gordon equation ∂+∂−χ + 4µ+µ− coshχ = 0 by means of the conformal

transformation

x± → e−eη± x± and χ→ χ+ η̃+ + η̃− (5.89)

with e 2eη+ = |u(x+)| and e 2eη− = |v(x−)|. Nevertheless, it would be more satisfactory to

find a conformal invariant Lagrangian action whose equations of motion are (5.84)–(5.85).

As explained at the beginning of this section, the approach of [8] and section 3.2 cannot

be applied to the ‘lightlike’ reduction of the AdSn sigma model and, in fact, finding the

Lagrangian formulation of this type of SSSG equations remains a open problem.

6. Conclusions

In this paper we have presented a systematic group theoretical formulation of the Pohlmeyer

reduction of two-dimensional nonlinear sigma models with target-space a symmetric space

F/G. The reduction consists in constraining all the chiral densities that display the classical

conformal invariance of the sigma model to take constant values. This provides a map

between the equations of motion of the sigma models and a class of integrable multi-

component generalisations of the sine-Gordon equation known as symmetric space sine-

Gordon (SSSG) equations. Each set of SSSG equations is specified by a triplet of data

(F/G,Λ+,Λ−), where Λ+ and Λ− are constant elements in a maximal abelian subspace,

say a, of the orthogonal complement of the Lie algebra g of G in the Lie algebra f of

F . Then, H(+) and H(−) are the centralisers of Λ+ and Λ− in G, respectively, and the

equations are written as zero-curvature conditions on the left-right asymmetric coset space

G/H
(−)
L ×H

(+)
R . For particular gauge fixing conditions, they take the form of non-abelian

affine Toda equations, which is how they usually appear in the literature [3 – 8].

The Lagrangian formulation of the SSSG equations was a long-standing problem until

Bakas, Park and Shin proposed their identification with the equations of motion of spe-

cific gauged Wess-Zumino-Witten (gWZW) actions modified by suitable potentials [8] (see

also [9 – 12]). This Lagrangian formulation suggests a perturbed conformal field theory

approach to the quantization of these integrable systems. Moreover, it is one of the key

ingredients of a recent proposal to find a novel manifestly two-dimensional Lorentz invari-

ant formulation of superstring theory on AdS5 ×S5 [19, 20, 23]. The original construction

of [8] was restricted to the cases with H(+) = H(−), but we have shown that the SSSG

equations admit a Lagrangian formulation in terms of a gauged WZW action with a poten-

tial term if both H(+) and H(−) are isomorphic to a single Lie group H. Remarkably, the
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equations with H(+) 6= H(−) correspond to integrable perturbations of asymmetric coset

models whose spectrum includes massive and massless modes.

As pointed out in [19], the Lagrangian formulation in terms of a gauge WZW action

with a potential term involves also a particular choice of gauge fixing conditions, whose

consistency has been clarified. Our results also show that the Lagrangian action, which is

associated to the coset G/H, is not unique. The different actions are related byH
(−)
L ×H

(+)
R

gauge transformations, but from the point of view of the Lagrangian actions themselves

those relations take the form of non-trivial target-space duality transformations similar to

those discussed in [42] whose structure should be clarified. Our systematic formulation also

makes explicit the relation between the degrees of freedom of the original nonlinear sigma

model and those of the relevant Lagrangian actions. It is summarised by figure 1.

In general, a single symmetric space may give rise to different sets of SSSG equations.

Their number depends both on the type of symmetric space and on its rank, which is the

dimension of the abelian subspace a, where Λ+ and Λ− live. When the symmetric space

is of definite signature and rank 1, the only independent constraints are T++ = µ2
+ > 0

and T−− = µ2
− > 0, and the reduction procedure gives rise to a single set of SSSG equa-

tions. These constraints can be identified with the Virasoro constraints of bosonic string

theory on Rt ×M, and the solutions to the corresponding SSSG equations provide string

configurations moving on curved space-times of this type. This has been widely used to

construct string configurations on the Rt×S
n subspaces of AdS5×S

5 in the context of the

investigation of the AdS/CFT correspondence [15, 16]. Hopefully, it will also help with the

construction of string configurations on the subspaces of AdS4×CP 3 that could be relevant

to investigate the recently proposed duality between superstrings moving on this space-time

and N = 6 super Chern-Simons theory [18]. In contrast, if rank(F/G) > 1 one has to con-

strain other chiral densities to be constant in addition to T++ and T++, and for different

values of those constants the reduction procedure gives rise to rather different sets of SSSG

equations. Their solutions should correspond to special bosonic string configurations that

satisfy additional constraints whose interpretation would be interesting to investigate. In

both cases, it is worth mentioning that the reduction procedure does not fix the sign of µ+

and µ−, which leaves free the overall sign of the potential term in the Lagrangian formula-

tion. This might be important since, in some cases, the SSSG equations have different soli-

ton solutions for each sign. The simplest example is provided by the complex sine-Gordon

equation that exhibits two different types of soliton solutions [14, 52] (see also [42]).

The case of the symmetric spaces of indefinite signature is much more complicated,

and we have made no attempt to discuss the corresponding SSSG equations in general.

Instead, we have only considered the reduction of sigma models with target space an anti-

de Sitter space AdSn, which has Lorentzian signature and rank 1. In this case, the relevant

constraints are T++ = λ+ and T−− = λ− but, as a consequence of the indefinite signature

of AdSn, the sign of λ+ and λ− is free and the resulting SSSG equations are different for

each sign. We have distinguished three basic types of reductions. The first one, called

here ‘spacelike’, corresponds to λ+, λ− > 0 and gives rise to SSSG equations with a (non-

unique) Lagrangian formulation in terms of a gWZW action corresponding to the coset

SO(1, n− 1)/SO(1, n− 2) with a potential term. The solutions to these equations describe
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bosonic string configurations on Rt ×AdSn. The second, named ‘timelike’, corresponds to

λ+, λ− < 0. It gives rise to SSSG equations which are the equations of motion of a (non-

unique) gWZW action corresponding to SO(1, n−1)/SO(n−1) with a potential term. Their

solutions describe bosonic string configurations on AdSn×S
1
ϑ. This second type of reduction

is the relevant one in the new formulation of superstring theory on AdS5 × S5 proposed

in [19, 20, 23]. The details of these two types of reductions follow the pattern summarised by

figure 1. The third type, named ‘lightlike, is rather different to the others. It corresponds to

λ+ = λ− = 0 which, clearly, does not break the classical conformal invariance of the sigma

model. The corresponding SSSG equations take the form of zero-curvature conditions on

the left-right asymmetric coset space SO(1, n− 1)/E(n− 2)L ×E(n− 2)R, where E(n− 2)

is the noncompact symmetry group of (n − 2)-dimensional Euclidean space. In this case,

neither the approach of [8] nor our generalization in section 3.2 can be used to find a

Lagrangian formulation, which remains an open problem. The solutions to these equations

have already been used to construct bosonic string configurations on AdSn in [21, 22].
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A. Consistency of the gauge conditions (3.41)

We shall investigate the conditions required to ensure that for each solution (γ,A
(L
+ , A

(R)
− )

to the equations of motion (3.26) there is a gauge transformation of the form (3.25) such

that the transformed solution satisfies the conditions (3.41).

First of all, we will write the conditions (3.41) in terms of quantities that take values

in h. Namely, using (3.44),

A
(L)
+ = ǫL(A+) and A

(R)
− = ǫR(A−),

and introducing the notation

Ph−

(
−∂−γγ

−1 + γǫR(A−)γ−1
)

= ǫL(Γ−)

and Ph+

(
γ−1∂+γ + γ−1ǫL(A+)γ

)
= ǫR(Γ+), (A.1)

with Γ+,Γ− ∈ h, the conditions (3.41) become simply

Γ− −A− = Γ+ −A+ = 0. (A.2)
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Now, writing h− = ǫL(h) and h+ = ǫR(h̃), with h, h̃ ∈ H, the gauge transformations (3.25)

lead to

Γ+ −A+ → h̃(Γ+ + ∂+)h̃−1 − h(A+ + ∂+)h−1

and Γ− −A− → h(Γ− + ∂−)h−1 − h̃(A− + ∂−)h̃−1. (A.3)

Therefore, the interpretation of (A.2) as gauge conditions requires that there exists h and

h̃ such that the right-hand-sides of the equations (A.3) vanish. This is equivalent to the

set of linear equations

∂+(h̃−1h) = −Γ+(h̃−1h) + (h̃−1h)A+

and ∂−(h̃−1h) = (h̃−1h)Γ− −A−(h̃−1h), (A.4)

whose integrability conditions are

(h̃−1h) [∂+ + A+, ∂− + Γ−] = [∂+ + Γ+, ∂− + A−] (h̃−1h) . (A.5)

They are trivially satisfied making use of (3.30), which ensures that

[∂+ + Γ+, ∂− + A−] = [∂+ + A+, ∂− + Γ−] = 0 . (A.6)

However, (3.30) holds provided that the decompositions (3.18) are valid. This is always

true if the symmetric space is of definite signature, but it not always so in more general

cases like the anti-de Sitter spaces AdSn (see section 5.3).

B. Pohlmeyer reduction of the S3 sigma model

Here we shall summarise the main features of the Pohlmeyer reduction of the S3 nonlinear

sigma model following the group theoretical approach of section 3. The reduction of the

S2 and S3 nonlinear sigma models was originally discussed by Pohlmeyer in [1] using

embedding coordinates. They lead to the equations of motion of the sine-Gordon and

complex sine-Gordon models, respectively, which provide the pattern for all the other

SSSG equations. In particular we shall emphasise the non-uniqueness of the Lagrangian

formulation that, in this case, amounts simply to the freedom of choosing the sign of the

potential term. The reduction of the CP 2 sigma model discussed in section 4.1 provides

an example where the relationship between the two relevant Lagrangians is not so simple.

We start by setting our notation in general for the n-sphere Sn = SO(n + 1)/SO(n),

which is a compact symmetric space of (definite signature and) type I. Using the funda-

mental (n + 1) × (n + 1) representation of SO(n + 1) and its diagonally embedded SO(n)

subgroup, the elements r ∈ g and k ∈ p in (2.1) are of the form

r =

(
0 0

0 N

)
and k =

(
0 −vT

v 0

)
≡ k[v] (B.1)

where N = −NT denotes a n × n skew-symmetric matrix and v = (v1, . . . , vn)T is a real

n-dimensional column vector. It is easy to check that this decomposition is orthogonal

with respect to the trace form and, moreover, that the rank of Sn is 1.
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In order to motivate the generalization proposed in section 5 for AdSn, we shall

rephrase the proof of the polar coordinate decomposition for Sn. Consider a generic element

of SO(n) ⊂ SO(n+ 1),

g =

(
1 0

0 N−1

)
with N ∈ SO(n). (B.2)

Then, the transformation k[v] → g−1k[v]g amounts to v → Nv, which is just a SO(n)

rotation that preserves the quadratic form −Tr(k2[v])/2 = v2
1 + · · ·+ v2

n = |v|2. Therefore,

for any fixed unitary vector e0 ∈ R
n, it is well known that there is a matrix N ∈ SO(n)

such that vN = |v| e0 or, equivalently, that there is g ∈ SO(n) ⊂ SO(n+ 1) such that

g−1kg =
1

2

√
−Tr(k2)

(
0 −eT

0

e0 0

)
. (B.3)

This is just the polar coordinate decomposition used in section 3. A convenient choice for

the arbitrary unitary vector is eT
0 = (1, 0, . . . , 0). Then, the polar coordinate decomposition

for Sn ensures that for each k ∈ p there exists g ∈ SO(n) and µ ∈ R such that

g−1kg = µk[(1, 0, . . . , 0)], (B.4)

which should be compared with the generalised decomposition (5.7) derived in section 5

for AdSn. It is worth noticing that, without loss of generality, µ can always be constrained

to be positive in (B.4), which is not always true in (5.7).

Then, in order to construct the SSSG equations corresponding to S3, we choose

Λ+ = Λ− = k[(1, 0, 0)] =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 (B.5)

in (3.22). Moreover, we will introduce the notation

r1 =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0


 = −rT1 and r3 =




0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0


 = −rT3 (B.6)

so that the centraliser of Λ+ = Λ− in SO(3) is the one-parameter (abelian) group

H(+) = H(−) = {e x r1; x ∈ R} ≃ SO(2). (B.7)

This motivates the use of the following parameterisation of Euler-angle type for the field

γ ∈ SO(3) ⊂ SO(4):

γ = e α r1 e θ r3 e−β r1 (B.8)

in terms of three real fields α, β and θ. Correspondingly, the gauge fields in (3.24) are

A
(R)
− = a− r1 and A

(L)
+ = a+ r1, (B.9)
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with a± ∈ R, and the SO(2)L × SO(2)R gauge transformations (3.25) read

α→ α+ ρ−, β → β + ρ+, and a± → a± − ∂±ρ∓, (B.10)

where h± = e ρ±r1 . Then, in terms of the gauge invariant fields

θ, b+ = a+ + ∂+α and b− = a− + ∂−β, (B.11)

the zero-curvature equations of motion (3.26) are

∂+∂−θ − (b+b− − µ+µ−) sin θ = 0 (B.12)

∂+

(
(1 + cos θ)b−

)
− ∂−

(
(1 + cos θ)b+

)
= 0 (B.13)

∂+

(
(1 − cos θ)b−

)
+ ∂−

(
(1 − cos θ)b+

)
= 0. (B.14)

The relationship with the equations of motion of the complex sine-Gordon Lagrangian

LCSG[ψ, λ] =
∂µψ ∂

µψ∗

1 − ψψ∗
− λ ψψ∗ (B.15)

can be obtained in two different ways. First, we can use (B.13) to write b+ and b− in terms

of a new field φ; namely,

b± =
2

1 + cos θ
∂±φ. (B.16)

Then, (B.12) and (B.14) become

∂µ

(
tan2(θ/2)∂µφ

)
= 0

∂+∂−θ −
4 sin θ

(1 + cos θ)2
∂+φ∂−φ+ µ+µ− sin θ = 0, (B.17)

which are the equations of motion of

L =
1

4
∂µθ∂

µθ + tan2(θ/2)∂µφ∂
µφ− µ+µ− sin2(θ/2)

= LCSG[sin(θ/2)e iφ,+µ+µ−] . (B.18)

In a completely equivalent way, we can use (B.14) to write

b± = ±
2

1 − cos θ
∂±φ̃, (B.19)

which also leads to the equations of motion of (B.15) but, in this second case,

L =
1

4
∂µθ∂

µθ + cot2(θ/2)∂µφ̃∂
µφ̃+ µ+µ− cos2(θ/2)

= LCSG[cos(θ/2)e iφ̃,−µ+µ−] . (B.20)

Remarkably, all the solutions to the equation of motion of the complex sine-Gordon La-

grangian (B.15) that correspond to solutions to the SSSG equations associated to S3 satisfy

|ψ| ≤ 1. The solutions with |ψ| ≥ 1 provide solutions to the ‘timelike’ SSSG equations

associated to AdS3 (see section 5.2).
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The two complex sine-Gordon Lagrangians (B.18) and (B.20) are related simply by

means of

(θ, φ,+µ+µ−) → (π − θ, φ̃,−µ+µ−) (B.21)

where, since b± and θ are the same in (B.16) and in (B.19), ∂±φ̃ = ± tan2(θ/2)∂±φ.

Remarkably, this is precisely the already known (on-shell) target-space duality transfor-

mation of the complex sine-Gordon Lagrangian [42, 51] which, in this case, arises as a

consequence of the fact that the solutions to the equations of motion of (B.18) and (B.20)

describe the same system of SSSG equations.

As explained in section 3.2, the equations (B.12)–(B.14) admit a Lagrangian formula-

tion in terms of a SO(3)/SO(2) gWZW action with a potential term. It requires to reduce

the SO(2)L × SO(2)R gauge symmetry (B.10) using the gauge conditions (3.41), which

depend on the choice of two homomorphisms ǫL/R : SO(2) → SO(3) constrained by (3.36).

In this case, there are only two non-equivalent choices. Using the same notation for the

corresponding homomorphisms between the Lie algebras of SO(2) and SO(3), the first one

is ǫL = ǫR = 1. It leads to the constraints

(a+ + ∂+α) cos θ − ∂+β = a+ and (a− + ∂−β) cos θ − ∂−α = a−, (B.22)

which can be solved as

b± = ±
1

1 − cos θ
∂±(α− β). (B.23)

Therefore, since b+ and b− are SO(2)L ×SO(2)R gauge invariant, the residual SO(2) gauge

transformations correspond to ρ+ = ρ− in (B.10), and the relevant gWZW action in (3.37)

is the one constructed using gauge transformations of ‘vector type’. The second possible

choice is ǫL = −ǫR = 1. It leads to

(a+ + ∂+α) cos θ − ∂+β = −a+ and (a− + ∂−β) cos θ − ∂−α = −a−, (B.24)

which can be solved as

b± =
1

1 + cos θ
∂±(α+ β). (B.25)

Then, the residual SO(2) gauge transformations correspond to ρ+ = −ρ− in (B.10), and

the gWZW action in (3.37) is constructed using gauge transformations of ‘axial type’. The

correspondence with the Lagrangian formulation in terms of the complex sine-Gordon La-

grangian (B.15) is provided by the comparison of (B.23) and (B.25) with (B.19) and (B.16),

respectively. It is in agreement with the results of [42] where it is also shown that the two

Lagrangian formulations are related (off-shell) by a target-space duality transformation

generated by the global SO(2) symmetry of the Lagrangian action (3.37).
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